
CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Summer 2017 1

100 years ago

Albert Einstein proposed
special theory of relativity in
1905
• In the paper On the

Electrodynamics of Moving
Bodies

CMSC 330 Summer 2017 2

Prioritätsstreit, “priority dispute”

CMSC 330 Summer 2017 3

General Theory of Relativity
• Einstein's field equations

presented in Berlin: Nov 25, 1915
• Published: Dec 2,1915

Prioritätsstreit, “priority dispute”

General Theory of Relativity
• Einstein's field equations

presented in Berlin: Nov 25, 1915
• Published: Dec 2,1915

CMSC 330 Summer 2017 4

• David Hilbert's equations
presented in Gottingen:
Nov 20, 1915

• Published: March 6, 1916

Entscheidungsproblem “decision problem”

CMSC 330 Summer 2017 5

Is there an algorithm to determine if a
statement is true in all models of a theory?

Entscheidungsproblem “decision problem“

CMSC 330 Summer 2017 6

Turing Machine

CMSC 330 Summer 2017 7

CMSC 330 Summer 2017 8

Turing Completeness

Turing machines are the most powerful
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program
• A program can be written to emulate a Turing machine
• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton

CMSC 330 Summer 2017 9

Programming Language Expressiveness

So what language features are needed to express
all computable functions?
• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience
• Multi-argument functions foo (a, b, c)

Ø Use currying or tuples
• Loops while (a < b) …

Ø Use recursion
• Side effects a := 1

Ø Use functional programming pass “heap” as an argument to
each function, return it when with function’s result)

Mini C
Sum n = 1+2+3+4+5…n in Mini C
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){

if(b == 0) return a;
else return add(add1(a),sub1(b));

}
int sum(int n){

if(n == 1) return 1;
else return add(n, sum(sub1(n)));

}
int main(){

printf("%d\n",sum(5));
}

CMSC 330 Summer 2017 10

You only have:
• If statement
• Plus 1
• Minus 1
• functions

CMSC 330 Summer 2017 11

Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church

(born in Washingon DC!)
Formal system
• Designed to investigate functions & recursion
• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability
• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…

CMSC 330 Summer 2017 12

Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable
| λx.e abstraction (fun def)
| e e application (fun call)

Ø This grammar describes ASTs; not for parsing (ambiguous!)
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it! Nothing but higher-order functions

CMSC 330 Summer 2017 13

Why Study Lambda Calculus?

It is a “core” language
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems,

algorithms, …

Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, … (and
functional languages like OCaml, Haskell, F#, …)

CMSC 330 Summer 2017 14

Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses
• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z
• Same rule as OCaml

As a convenience, we use the following “syntactic
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1

CMSC 330 Summer 2017 15

OCaml Lambda Calc Interpreter

e ::= x
| λx.e
| e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

type id = string
type exp = Var of id
| Lam of id * exp
| App of exp * exp

Var “y”
Lam (“x”, Var “x”)
Lam (“x”, (Lam (“y”, App (Var “x”, Var “y”)

App
(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))),
Lam (“x”, App (Var “x”, Var “x”)))

Quiz #1

CMSC 330 Summer 2017 16

A. True
B. False

(λx.y) z and λx.y z are equivalent

Quiz #1

(λx.y) z and λx.y z are equivalent

CMSC 330 Summer 2017 17

A. True
B.False

Quiz #2

What is this term’s AST?

λx.x x

CMSC 330 Summer 2017 18

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (“x”, App (Var “x”,Var “x”))
C. Lam (Var “x”, Var “x”, Var “x”)
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

Quiz #2

What is this term’s AST?

λx.x x

CMSC 330 Summer 2017 19

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (“x”, App (Var “x”,Var “x”))
C. Lam (Var “x”, Var “x”, Var “x”)
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

Quiz #3

This term is equivalent to which of
the following?

λx.x a b

CMSC 330 Summer 2017 20

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

Quiz #3

This term is equivalent to which of
the following?

λx.x a b

CMSC 330 Summer 2017 21

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Summer 2017 22

Lambda Calculus Semantics
All we’ve got are functions
• So all we can do is call them

To evaluate (λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formals with actuals
• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term
Ø Order reductions are applied does not affect final value!

CMSC 330 Summer 2017 23

Beta Reduction Example

(λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual

CMSC 330 Summer 2017 24

Beta Reduction Examples

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y

CMSC 330 Summer 2017 25

Beta Reduction Examples (cont.)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x → xx

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) →

CMSC 330 Summer 2017 26

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

CMSC 330 Summer 2017 27

Quiz #4

λx.y z can be beta-reduced to

CMSC 330 Summer 2017 28

A. y
B. y z
C.z
D. cannot be reduced

Quiz #4

λx.y z can be beta-reduced to

CMSC 330 Summer 2017 29

A. y
B. y z
C.z
D. cannot be reduced

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

CMSC 330 Summer 2017 30

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

CMSC 330 Summer 2017 31

CMSC 330 Summer 2017 32

Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following
• (λx.x (λx.x)) z → ?

Ø The rightmost “x” refers to the second binding
• This is a function that

Ø Takes its argument and applies it to the identity function

This function is “the same” as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

Ø This is called alpha-renaming or alpha conversion
• Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z

Quiz #6
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

CMSC 330 Summer 2017 33

Quiz #6
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

CMSC 330 Summer 2017 34

Defining Substitution
Use recursion on structure of terms
• x[x:=e] = e // Replace x by e
• y[x:=e] = y // y is different than x, so no effect
• (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application
• (λx.e’)[x:=e] = λx.e’

Ø In λx.e’, the x is a parameter, and thus a local variable that is
different from other x’s. Implements static scoping.

Ø So the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in e’

• (λy.e’)[x:=e] = ?
Ø The parameter y does not share the same name as x, the

variable being substituted for
Ø Is λy.(e’[x:=e]) correct? No…

CMSC 330 Summer 2017 35

CMSC 330 Summer 2017 36

Variable capture
How about the following?
• (λx.λy.x y) y → ?
• When we replace y inside, we don’t want it to be

captured by the inner binding of y, as this violates
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is “the same” as (λx.λz.x z)

Ø Due to alpha conversion
• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first

Ø Now (λx.λz.x z) y → λz.y z

Completing the Definition of Substitution

Recall: we need to define (λy.e’)[x:=e]
• We want to avoid capturing (free) occurrences of y in e
• Solution: alpha-conversion!

Ø Change y to a variable w that does not appear in e’ or e
(Such a w is called fresh)

Ø Replace all occurrences of y in e’ by w.
Ø Then replace all occurrences of x in e’ by e!

Formally:
(λy.e’)[x:=e] = λw.((e’ [y:=w]) [x:=e]) (w is fresh)

CMSC 330 Summer 2017 37

CMSC 330 Summer 2017 38

Beta-Reduction, Again

Whenever we do a step of beta reduction
• (λx.e1) e2 → e1[x:=e2]
• We must alpha-convert variables as necessary
• Sometimes performed implicitly (w/o showing

conversion)

Examples
• (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
• (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y

OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =
match m with

Var x ->
if y = x then e (* substitute *)
else m (* don’t subst *)

| App (e1,e2) ->
App (subst e1 y e, subst e2 y e)

| Lam (x,e0) -> …

CMSC 330 Summer 2017 39

m[y:=e]

OCaml Impl: Substitution (cont’d)
(* substitute e for y in m *)
let rec subst m y e = match m with …

| Lam (x,e0) ->
if y = x then m
else if not (List.mem x (fvs e)) then
Lam (x, subst e0 y e)

else
let z = newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

CMSC 330 Summer 2017 40

Shadowing blocks
substitution

Safe: no capture possible
Might capture; need to α-convert

OCaml Impl: Reduction
let rec reduce e =
match e with

App (Lam (x,e), e2) -> subst e x e2
| App (e1,e2) ->
let e1' = reduce e1 in
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2)

| Lam (x,e) -> Lam (x, reduce e)
| _ -> e

CMSC 330 Summer 2017 41

Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body

Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

CMSC 330 Summer 2017 42

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

CMSC 330 Summer 2017 43

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Quiz #8
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

CMSC 330 Summer 2017 44

Quiz #8
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

CMSC 330 Summer 2017 45

