
CMSC 330:  Organization of 
Programming Languages

Lambda Calculus
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100 years ago

Albert Einstein proposed 
special theory of relativity in 
1905
• In the paper On the 

Electrodynamics of Moving 
Bodies
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Prioritätsstreit, “priority dispute”
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General Theory of Relativity
• Einstein's field equations 

presented in Berlin: Nov 25, 1915
• Published: Dec 2,1915



Prioritätsstreit, “priority dispute”

General Theory of Relativity
• Einstein's field equations 
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• David Hilbert's equations 
presented in Gottingen: 
Nov 20, 1915

• Published: March 6, 1916



Entscheidungsproblem “decision problem”
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Is there an algorithm to determine if a 
statement is true in all models of a theory?



Entscheidungsproblem “decision problem“
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Turing Machine
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Turing Completeness

Turing machines are the most powerful 
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program
• A program can be written to emulate a Turing machine
• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton
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Programming Language Expressiveness

So what language features are needed to express 
all computable functions?
• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience
• Multi-argument functions foo ( a, b, c )

Ø Use currying or tuples
• Loops while (a < b) …

Ø Use recursion
• Side effects a := 1

Ø Use functional programming pass “heap” as an argument to 
each function, return it when with function’s result)



Mini C
Sum n = 1+2+3+4+5…n in Mini C
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){

if(b == 0) return a;
else return add( add1(a),sub1(b));

}
int sum(int n){

if(n == 1) return 1;
else return add(n, sum(sub1(n)));

}
int main(){

printf("%d\n",sum(5));
}

CMSC 330 Summer 2017 10

You only have:
• If statement
• Plus 1
• Minus 1
• functions
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Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church 

(born in Washingon DC!)
Formal system
• Designed to investigate functions & recursion
• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability
• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…
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Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable
|  λx.e abstraction (fun def)
|  e e application (fun call)

Ø This grammar describes ASTs; not for parsing (ambiguous!)
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it!  Nothing but higher-order functions
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Why Study Lambda Calculus?

It is a “core” language 
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems, 

algorithms, …

Plus, higher-order, anonymous functions (aka 
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, … (and 
functional languages like OCaml, Haskell, F#, …)
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Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses
• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z
• Same rule as OCaml

As a convenience, we use the following “syntactic 
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1
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OCaml Lambda Calc Interpreter

e ::= x
|  λx.e
|  e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

type id = string
type exp = Var of id
| Lam of id * exp
| App of exp * exp

Var “y”
Lam (“x”, Var “x”)
Lam (“x”, (Lam (“y”, App (Var “x”, Var “y”)

App 
(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))), 
Lam (“x”, App (Var “x”, Var “x”)))



Quiz #1
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A. True
B. False

(λx.y) z and λx.y z are equivalent



Quiz #1

(λx.y) z and λx.y z are equivalent
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A. True
B.False



Quiz #2

What is this term’s AST? 

λx.x x
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A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (“x”, App (Var “x”,Var “x”))
C. Lam (Var “x”, Var “x”, Var “x”)
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 

Var of id
| Lam of id * exp
| App of exp * exp



Quiz #2

What is this term’s AST? 

λx.x x
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A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (“x”, App (Var “x”,Var “x”))
C. Lam (Var “x”, Var “x”, Var “x”)
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 

Var of id
| Lam of id * exp
| App of exp * exp



Quiz #3

This term is equivalent to which of 
the following? 

λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))



Quiz #3

This term is equivalent to which of 
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λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))
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Lambda Calculus Semantics
All we’ve got are functions
• So all we can do is call them

To evaluate (λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formals with actuals
• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term
Ø Order reductions are applied does not affect final value!



CMSC 330 Summer 2017 23

Beta Reduction Example

(λx.λz.x z) y 
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual
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Beta Reduction Examples

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y
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Beta Reduction Examples (cont.)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments 
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x → xx



Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) → 
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Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)
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Quiz #4

λx.y z can be beta-reduced to  
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A. y
B. y z
C.z
D. cannot be reduced



Quiz #4

λx.y z can be beta-reduced to  
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A. y
B. y z
C.z
D. cannot be reduced



Quiz #5

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)   (λy. λx. z) z (λz. z)
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Quiz #5

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)   (λy. λx. z) z (λz. z)
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Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following
• (λx.x (λx.x)) z → ?

Ø The rightmost “x” refers to the second binding
• This is a function that 

Ø Takes its argument and applies it to the identity function

This function is “the same” as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

Ø This is called alpha-renaming or alpha conversion
• Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z



Quiz #6
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z
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Quiz #6
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z
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Defining Substitution
Use recursion on structure of terms
• x[x:=e] = e // Replace x by e
• y[x:=e] = y // y is different than x, so no effect
• (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application
• (λx.e’)[x:=e] = λx.e’

Ø In λx.e’, the x is a parameter, and thus a local variable that is 
different from other x’s. Implements static scoping.

Ø So the substitution has no effect in this case, since the x being 
substituted for is different from the parameter x that is in e’

• (λy.e’)[x:=e] = ?
Ø The parameter y does not share the same name as x, the 

variable being substituted for
Ø Is λy.(e’[x:=e]) correct? No…
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Variable capture
How about the following?
• (λx.λy.x y) y → ?
• When we replace y inside, we don’t want it to be 

captured by the inner binding of y, as this violates 
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is “the same” as (λx.λz.x z) 

Ø Due to alpha conversion
• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first

Ø Now (λx.λz.x z) y → λz.y z



Completing the Definition of Substitution

Recall:  we need to define (λy.e’)[x:=e]
• We want to avoid capturing (free) occurrences of y in e
• Solution:  alpha-conversion!

Ø Change y to a variable w that does not appear in e’ or e
(Such a w is called fresh)

Ø Replace all occurrences of y in e’ by w.
Ø Then replace all occurrences of x in e’ by e!

Formally:
(λy.e’)[x:=e] = λw.((e’ [y:=w]) [x:=e]) (w is fresh)
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Beta-Reduction, Again

Whenever we do a step of beta reduction
• (λx.e1) e2 → e1[x:=e2]
• We must alpha-convert variables as necessary
• Sometimes performed implicitly (w/o showing 

conversion)

Examples
• (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
• (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y



OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =
match m with

Var x -> 
if y = x then e (* substitute *)
else m          (* don’t subst *)

| App (e1,e2) ->
App (subst e1 y e, subst e2 y e)

| Lam (x,e0) -> …
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m[y:=e]



OCaml Impl: Substitution (cont’d)
(* substitute e for y in m *)
let rec subst m y e = match m with …

| Lam (x,e0) ->
if y = x then m
else if not (List.mem x (fvs e)) then
Lam (x, subst e0 y e)

else
let z = newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)
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Shadowing blocks
substitution

Safe: no capture possible
Might capture; need to α-convert



OCaml Impl: Reduction
let rec reduce e =
match e with

App (Lam (x,e), e2) -> subst e x e2
| App (e1,e2) -> 
let e1' = reduce e1 in
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2)

| Lam (x,e) -> Lam (x, reduce e)
| _ -> e
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Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body



Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y
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A. y (λz.z y) 
B. z (λy.y z) 
C. y (λy.y y) 
D. y y



Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y
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A. y (λz.z y) 
B. z (λy.y z) 
C. y (λy.y y) 
D. y y



Quiz #8
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

a) λx. w w z    
b) λx. w z    
c) w z    
d) Does not reduce
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Quiz #8
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

a) λx. w w z    
b) λx. w z    
c) w z    
d) Does not reduce
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