
	

	University of Maryland College Park

	
	Dept of Computer Science

	
	CMSC132 Summer 2012

	
	Midterm I

First Name (PRINT): ___

Last Name (PRINT): ___

University ID: ___

Section/TAName: ___

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

· This exam is a closed-book and closed-notes exam.
· Total point value is 100 points.
· The exam is a 50 minutes exam.
· Please use a pencil to complete the exam.
· WRITE NEATLY. If we cannot understand your answer, we will not grade it (i.e., 0 credit).

Grader Use Only

	#1
	Java Language Features
	(25)
	

	#2
	Class Implementation
	(75)
	

	Total
	Total
	(100)
	

Problem 1 (25 pts) Java Language Features

1. (2 pts) What is the difference between an interface and an abstract class?

2. (2 pts) What is the difference between a check and an unchecked exception.

3. (2 pts) When is the finalize() method invoked?

4. (3 pts) What is procedural abstraction?

5. (2 pts) Describe two of the components associated with the Model-View-Controller (MVC).

6. (2 pts) For our first project (ClearCellGame) which component (of the Model-View-Controller) did you implement? 		

[bookmark: _GoBack]
7. (3 pts) What is the difference between a static initialization block and a non-static initialization block?

8. (2 pts) T or F A final method cannot be overridden by a subclass.

9. (2 pts) T or F The following variable declaration is legal only if the abstract class CPU has a constructor.

CPU x = new CPU();

10. (2 pts) T or F A class extending an abstract class will become abstract if abstract method(s) from the super class are not defined in the subclass.

11. (3 pts) The Ship interface defines a single method with the following signature: public void stop(); 	Using an anonymous inner class complete the following assignment where x is assigned an object that
 implements the Ship interface and the method stop() will print (using System.out.println) the message
 “Stop Ship”.

Ship x =

Problem 2 (75 pts) Class Implementation

For this problem you will complete a class named Flight.

public class Flight implements Comparable<Flight>, Iterable<String> {
	private int flightNumber;
	private String captain;
	private String[] seats;
	private int numberOfPassengers;

	// Methods you will implement go here
}

For this problem:

1. All the methods are public and non-static.
2. Constructor It has three parameters (flight number, captain’s name, and maximum number of seats) that are used to initialize the object. The maximum number of seats represents the size of the seats array that will be created by the constructor.
3. Default Constructor It initializes the object using the values 2, “STAFF”, and 10. You must use “this” to call the previous constructor, otherwise you will not receive any credit.
4. addPassenger Takes a string representing a passenger’s name. It adds the passenger to the end of the seats array, if there is space. It the parameter provided is null, the method will throw IllegalArgumentException with the message “Invalid name”. The method will return a reference to the current object.
5. equals method Two flight objects are considered equal if they have the same flight number.
6. compareTo method The method will allow us to sort flights based on number of passengers. If we called Collection.sort() on an ArrayList of Flight objects, the flights with large number of passengers will be displayed first.
7. iterator() Returns an iterator that allow us to iterate over the seats array. You do not need to implement the remove method.
8. toString() It returns a string with the flight number, captain’s name and maximum number of seats. See the sample output below for the output format.
9. The sample driver (and output) below can help you verify the functionality of some of the methods described above.

public class Driver {
	public static void main(String[] args) {
		Flight flight132 = new Flight(132, "Nerdson", 5);
		flight132.addPassenger("Yulu").addPassenger("Justin");
		System.out.println(flight132);
		
		System.out.println("Passengers:");
		for (String name : flight132) { System.out.println(name); }
		
		Flight flight106 = new Flight();
		System.out.println("Comparison: " + (flight106.compareTo(flight132) > 0));
	}
}

DRIVER OUTPUT

Flight Number: 132
Captain: Nerdson
Maximum Number Seats: 5
Passengers:
Yulu
Justin
Comparison: true

PAGE FOR YOUR ANSWERS

PAGE FOR YOUR ANSWERS

3

image1.png

