From Particles to Rigid Bodies

- Particles
 - No rotations
 - Linear velocity \boldsymbol{v} only
 - 3N DoFs

- Rigid bodies
 - 6 DoFs (translation + rotation)
 - Linear velocity $\ensuremath{\mathrm{v}}$
 - Angular velocity ω

Outline

- Rigid Body Representation
- Kinematics
- Dynamics
- Simulation Algorithm
- Collisions and Contact Response

- Body Space (Local Coordinate System)
 - Rigid bodies are defined relative to this system
 - Center of mass is the origin (for convenience)
 - We will specify body-related physical properties (inertia, ...) in this frame

• World Space: rigid body transformation to common frame $\mathbf{p}(t) = \mathbf{x}(t) + \operatorname{Rot}(\mathbf{p}_0)$ translation

Center of mass

 Definition $\mathbf{x}_0 = \frac{\sum m_i \mathbf{x}_i}{\sum m_i} = \frac{\sum m_i \mathbf{x}_i}{M}$ X_1, m_1 $M\mathbf{x}_0 = \sum m_i \mathbf{x}_i$ X_{2}, m_{2} X_4, m_4 Motivation: forces \mathbf{X}_5, m_5 (one mass particle:) $\mathbf{f}_i = m_i \mathbf{\ddot{x}}_i$ (entire body:) $\mathbf{F} = \sum \mathbf{f}_i = \frac{d^2}{dt^2} \sum m_i \mathbf{x}_i$ Image ETHZ 2005 $\mathbf{F} = M \ddot{\mathbf{x}}_{\cap}$ COMP768-M.Lin

Rotations

- Euler angles:
 - 3 DoFs: roll, pitch, heading
 - Dependent on order of application
 - Not practical

Rotations

- Rotation matrix
 - 3x3 matrix: 9 DoFs
 - Columns: world-space coordinates of bodyspace base vectors

- Rotate a vector: $Rot(\mathbf{v}) = R\mathbf{v} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_1 & \mathbf{a}_1 \end{pmatrix} \mathbf{v}$

Rotations

Problem with rotation matrices: numerical drift

$$R(t_k) = \Delta t^k \dot{R}(t_k) \dot{R}(t_{k-1}) \dot{R}(t_{k-2}) \dots R(t_0)$$

- Fix: use Gram-Schmidt orthogonalization
- Drift is easier to fix with quaternions

Unit Quaternion Definition

U

θ

- $\mathbf{q} = [s, \mathbf{v}] : s$ is a scalar, \mathbf{v} is vector
- A rotation of θ about a unit axis u can be represented by the unit quaternion:
 [cos(θ/2), sin(θ /2) u]
- Rotate a vector: $Rot(v) = qaq^{\star}$
- Fix drift:
 - 4-tuple: vector representation of rotation
 - Normalized quaternion always defines a rotation in \Re^3

Unit Quaternion Operations

• Special multiplication: $[s_1, v_1][s_2, v_2] = [s_1s_2 - v_1 \cdot v_2, s_1v_2 + s_2v_1 + v_1 \times v_2]$

$$\frac{dq(t)}{dt} = \frac{1}{2}\omega(t)\mathbf{q}(t) = \frac{1}{2}\begin{bmatrix} 0 & \omega(t) \end{bmatrix} \mathbf{q}(t)$$

Back to rotation matrix

$$R = \begin{pmatrix} 1 - 2v_y^2 - 2v_z^2 & 2v_xv_y - 2sv_z & 2v_xv_z + 2sv_y \\ 2v_xv_y + 2sv_z & 1 - 2v_x^2 - 2v_z^2 & 2v_yv_z - 2sv_x \\ 2v_xv_z - 2sv_y & 2v_yv_z + 2sv_x & 1 - 2v_x^2 - 2v_y^2 \end{pmatrix}$$

Outline

- Rigid Body Representation
- Kinematics
- Dynamics
- Simulation Algorithm
- Collisions and Contact Response

- How do $\mathbf{x}(t)$ and $\mathbf{R}(t)$ change over time?
- Linear velocity v(t) describes the velocity of the center of mass x (m/s)

Kinematics: Velocities

- Angular velocity, represented by $\omega(t)$
 - Direction: axis of rotation
 - Magnitude $|\omega|$: angular velocity about the axis (rad/s) $\dot{\mathbf{x}} = \omega \times \mathbf{x}$

- Time derivative of rotation matrix:
 - Velocities of the body-frame axes, i.e. the columns of R

$$\dot{R} = \left(\omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right)$$

Angular Velocities

Outline

- Rigid Body Representation
- Kinematics
- Dynamics
- Simulation Algorithm
- Collisions and Contact Response

Dynamics: Accelerations

- How do v(t) and ω (t) change over time?
- First we need some more machinery
 - Forces and Torques
 - Linear and angular momentum
 - Inertia Tensor
- Simplify equations by formulating accelerations in terms of momentum derivatives instead of velocity derivatives

Forces and Torques

- External forces $\mathbf{f}_{i}(t)$ act on particles
 - Total external force $\mathbf{F}=\sum \mathbf{f}_{i}(t)$
- Torques depend on distance from the center of mass:

$$\tau_i(t) = (\mathbf{r}_i(t) - \mathbf{x}(t)) \times \mathbf{f}_i(t)$$

- Total external torque

 $\tau(t) = \sum ((\mathbf{r}_i(t) - \mathbf{x}(t)) \times \mathbf{f}_i(t))$

- **F**(t) doesn't convey any information about where the various forces act
- $\tau(t)$ does tell us about the distribution of forces $_{COMP768-M,Lin}$

 \mathbf{X}_2, m_2

 \mathbf{X}_{2}, m_{2}

 \mathbf{X}_4, m_2

 \mathbf{X}_5, m_5

Linear Momentum

- Linear momentum P(t) lets us express the effect of total force F(t) on body (due to conservation of energy): $F(t) = \frac{dP(t)}{dt}$
- Linear momentum is the product of mass and linear velocity
 - $\begin{array}{l} P(t) = \sum m_i dr_i(t)/dt \\ = \sum m_i \mathbf{v}(t) + \omega(t) \times \sum m_i(\mathbf{r}_i(t) \mathbf{x}(t)) \\ = \sum m_i \mathbf{v}(t) = M \mathbf{v}(t) \end{array}$
 - Just as if body were a particle with mass M and velocity v(t)
 - Time derivative of $\mathbf{v}(t)$ to express acceleration:

$$\dot{\mathbf{v}}(t) = M^{-1} \frac{dP(t)}{dt} = M^{-1}F(t)$$

• Use P(t) instead of v(t) in state vectors

Angular momentum

- Same thing, angular momentum L(t) allows us to express the effect of total torque τ (t) on the body: $\dot{L}(t) = \tau(t)$
- Similarly, there is a linear relationship between momentum and velocity: $L(t) = I\omega(t)$

- I(t) is inertia tensor, plays the role of mass

• Use L(t) instead of ω (t) in state vectors

Inertia Tensor

- 3x3 matrix describing how the shape and mass distribution of the body affects the relationship between the angular velocity and the angular momentum *L*(*t*)
- Analogous to mass rotational mass
- We actually want the inverse *I*⁻¹(*t*) to compute ω(*t*)=*I*⁻¹(*t*)*L*(*t*)

Inertia Tensor

Bunch of volume integrals:

$$I_{xx} = \int_{V} \rho(x, y, z) \left(y^{2} + z^{2}\right) dV \qquad I_{xy} = I_{yx} = \int_{V} \rho(x, y, z) (xy) dV$$

$$I_{yy} = \int_{V} \rho(x, y, z) \left(x^{2} + z^{2}\right) dV \qquad I_{xz} = I_{zx} = \int_{V} \rho(x, y, z) (zx) dV$$

$$I_{zz} = \int_{V} \rho(x, y, z) \left(x^{2} + y^{2}\right) dV \qquad I_{yz} = I_{zy} = \int_{V} \rho(x, y, z) (yz) dV$$

Inertia Tensor

- Avoid recomputing inverse of inertia tensor
- Compute I in body space I_{body} and then transform to world space as required
 - I(t) varies in world space, but $\rm I_{body}$ is constant in body space for the entire simulation
- Intuitively:
 - Transform $\omega(t)$ to body space, apply inertia tensor in body space, and transform back to world space
 - $L(t) = I(t)\omega(t) = R(t) I_{body} R^{T}(t) \omega(t)$
 - $I^{-1}(t) = R(t) I_{body}^{-1} R^{T}(t)_{COMP768- M.Li}$

Computing I_{body}⁻¹

- There exists an orientation in body space which causes I_{xy} , I_{xz} , I_{yz} to all vanish
 - Diagonalize tensor matrix, define the eigenvectors to be the local body axes
 - Increases efficiency and trivial inverse
- Point sampling within the bounding box
- Projection and evaluation of Greene's thm.
 - Code implementing this method exists
 - Refer to Mirtich's paper at

http://www.acm.org/jgt/papers/Mirtich96

Approximation w/ Point

- Pros: Simple, fairly accurate, no B-rep needed.
- Cons: Expensive, requires volume test.

Use of Green's Theorem

- Pros: Simple, exact, no volumes needed.
- Cons: Requires boundary representation.

Outline

- Rigid Body Representation
- Kinematics
- Dynamics
- Simulation Algorithm
- Collisions and Contact Response

Position state vector

$$\dot{\mathbf{X}}(t) = \frac{d}{dt} \begin{pmatrix} \mathbf{x}(t) \\ \mathbf{q}(t) \\ P(t) \\ L(t) \end{pmatrix} \xrightarrow{} \text{Spatial information}$$

v(t) replaced by linear momentum P(t) $\omega(t)$ replaced by angular momentum L(t)Size of the vector: (3+4+3+3)N = 13N

Velocity state vector

$$\dot{\mathbf{X}}(t) = \frac{d}{dt} \begin{pmatrix} \mathbf{x}(t) \\ \mathbf{q}(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \frac{1}{2}\omega(t)\mathbf{q}(t) \\ F(t) \\ \tau(t) \end{pmatrix} = \begin{pmatrix} \frac{P(t)}{M} \\ \frac{1}{2}I^{-1}L(t)\mathbf{q}(t) \\ \frac{1}{2}I^{-1}L(t)\mathbf{q}(t) \\ F(t) \\ \tau(t) \end{pmatrix}$$

Conservation of momentum (P(t), L(t)) lets us express the accelerations in terms of forces and torques.

Simulation Algorithm

Pre-compute: $M \leftarrow \sum m_i$ I_{body} Initialize $\mathbf{x}, \mathbf{v}, R, \omega, \mathbf{X}, \dot{\mathbf{X}}$ $I^{-1} \leftarrow RI_{body}R^T$ $L \leftarrow I\omega$

$$egin{aligned} & au \leftarrow \sum \mathbf{r}_i imes \mathbf{f}_i \ & \mathbf{F} \leftarrow \sum \mathbf{f}_i \ & \mathbf{X}, \dot{\mathbf{X}}) \leftarrow \mathsf{step}(\mathbf{X}, \dot{\mathbf{X}}, \mathbf{F}, au) \ & R \leftarrow \mathsf{quat2mat}(\mathbf{q}) \ & I^{-1} \leftarrow RI_{\mathsf{body}} R^T \end{aligned}$$

Accumulate forces

Your favorite ODE solver

Simulation Algorithm

Pre-compute: $M \leftarrow \sum m_i$ I_{body} Initialize $\mathbf{x}, \mathbf{v}, R, \omega$ $I^{-1} \leftarrow RI_{body}R^T$ $L \leftarrow I\omega$

$$\begin{array}{l} \tau \leftarrow \sum \mathbf{r}_i \times \mathbf{f}_i \\ \mathbf{F} \leftarrow \sum \mathbf{f}_i \\ P \leftarrow P + \Delta t \mathbf{F} \\ L \leftarrow L + \Delta t \mathbf{T} \\ \omega \leftarrow I^{-1} L \\ \mathbf{x} \leftarrow \mathbf{x} + \Delta t \frac{\mathbf{P}}{\mathbf{M}} \\ \mathbf{q} \leftarrow \mathbf{q} + \Delta t \frac{1}{2} \omega \mathbf{q} \\ R \leftarrow \mathsf{quat2mat}(\mathbf{q}) \\ I^{-1} \leftarrow RI_{\mathsf{body}} R^T \end{array}$$

Accumulate forces

Explicit Euler step

Outline

- Rigid Body Representation
- Kinematics
- Dynamics
- Simulation Algorithm
- Collision Detection and Contact Determination
 - Contact classification
 - Intersection testing, bisection, and nearest features

What happens when bodies collide?

- Colliding
 - Bodies bounce off each other
 - Elasticity governs 'bounciness'
 - Motion of bodies changes **discontinuously** within a discrete time step
 - 'Before' and 'After' states need to be computed
- In contact
 - Resting
 - Sliding
 - Friction

Detecting collisions and response

- Several choices
 - Collision detection: which algorithm?
 - Response: Backtrack or allow penetration?
- Two primitives to find out if response is necessary:
 - Distance(A,B): cheap, no contact information \rightarrow fast intersection query
 - Contact(A,B): expensive, with contact information

Distance(A,B)

- Returns a value which is the minimum distance between two bodies
- Approximate may be ok
- Negative if the bodies intersect
- Convex polyhedra
 - Lin-Canny and GJK -- 2 classes of algorithms
- Non-convex polyhedra
 - Much more useful but hard to get distance fast
 - PQP/RAPID/SWIFT++
- Remark: most of these algorithms give inaccurate information if bodies intersect, except for DEEP

Contacts(A,B)

- Returns the set of features that are nearest for disjoint bodies or intersecting for penetrating bodies
- Convex polyhedra
 - LC & GJK give the nearest features as a bi-product of their computation – only a single pair. Others that are equally distant may not be returned.
- Non-convex polyhedra
 - Much more useful but much harder problem especially contact determination for disjoint bodies
 - Convex decomposition: SWIFT++

Prereq: Fast intersection test

- First, we want to make sure that bodies will intersect at next discrete time instant
- If not:
 - X_{new} is a valid, non-penetrating state, proceed to next time step
- If intersection:
 - Classify contact
 - Compute response
 - Recompute new state

Bodies intersect \rightarrow classify contacts

- Colliding contact ('easy')
 - $v_{rel} < -\epsilon$
 - Instantaneous change in velocity
 - Discontinuity: requires restart of the equation solver
- Resting contact (hard!)
 - $-\epsilon < v_{rel} < \epsilon$
 - Gradual contact forces avoid interpenetration
 - No discontinuities
- Bodies separating
 - $V_{rel} > \epsilon$
 - No response required

Colliding contacts

- At time t_i, body A and B intersect and $v_{rel} < -\epsilon$
- Discontinuity in velocity: need to stop numerical solver
- Find time of collision $t_{\rm c}$
- Compute new velocities $v^+(t_c) \rightarrow X^+(t)$
- Restart ODE solver at time t_c with new state X⁺(t)

Time of collision

- We wish to compute when two bodies are "close enough" and then apply contact forces
- Let's recall a particle colliding with a plane

Time of collision

• We wish to compute t_c to some tolerance

Time of collision

- A common method is to use **bisection** search until the distance is positive but less than the tolerance
- 2. Use continuous collision detection
- 3. t_c not always needed → penalty-based methods

Bisection

```
findCollisionTime(X,t,\Deltat)
```

foreach pair of bodies (A,B) do Compute_New_Body_States(S_{copy}, t, Δ t); $hs(A,B) = \Delta t;$ // H is the target timestep if Distance(A,B) < 0 then $try_h = \Delta t /2; try_t = t + try_h;$ while TRUE do Compute_New_Body_States(S_{copy}, t, try_t - t); if Distance(A,B) < 0 then try h = 2; try t = try h; else if Distance(A,B) < ε then break; else try h = 2; try t + = try h; hs(A,B)->append(try_t - t); h = min(hs);COMP768-M.Lin

What happens upon collision

- Force driven
 - Penalty based
 - Easier, but slow objects react `slow' to collision
- Impulse driven
 - Impulses provide instantaneous changes to velocity, unlike forces

$$\Delta(\mathsf{P}) = \mathsf{J}$$

- We apply impulses to the colliding objects, at the point of collision
- For frictionless bodies, the direction will be the same as the normal direction:
 J = j n

Colliding Contact Response

- Assumptions:
 - Convex bodies
 - Non-penetrating
 - Non-degenerate configuration
 - edge-edge or vertex-face
 - appropriate set of rules can handle the others
- Need a contact unit normal vector
 - Face-vertex case: use the normal of the face
 - Edge-edge case: use the cross-product of the direction vectors of the two edges

Colliding Contact Response

- Point velocities at the nearest points: $\dot{p}_a(t_0) = v_a(t_0) + \omega_a(t_0) \times (p_a(t_0) - x_a(t_0))$ $\dot{p}_b(t_0) = v_b(t_0) + \omega_b(t_0) \times (p_b(t_0) - x_b(t_0))$
- Relative contact normal velocity: $v_{rel} = \hat{n}(t_0) \cdot (\dot{p}_a(t_0) - \dot{p}_b(t_0))$

Colliding Contact Response

• We will use the empirical law of frictionless collisions: $v_{rel}^+ = -\epsilon v_{rel}^-$

– Coefficient of restitution ε [0,1]

- $\epsilon = 0$ bodies stick together
- $\varepsilon = 1 \text{loss-less rebound}$
- After some manipulation of equations...

$$j = \frac{-(1+\epsilon)v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0)\left(r_a \times \hat{n}(t_0)\right)\right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0)\left(r_b \times \hat{n}(t_0)\right)\right) \times r_b}$$

Compute and apply impulses

 The impulse is an instantaneous force – it changes the velocities of the bodies instantaneously:

$$J = j\mathbf{n}$$
$$\Delta \mathbf{v} = \frac{J}{M}$$
$$\Delta L = (\mathbf{x}_{\text{impact}} - \mathbf{x}) \times J$$

Penalty Methods

- If we don't look for time of collision t_c then we have a simulation based on penalty methods: the objects are allowed to intersect.
- Global or local response
 - Global: The penetration depth is used to compute a spring constant which forces them apart (dynamic springs)
 - Local: Impulse-based techniques

References

- D. Baraff and A. Witkin, "Physically Based Modeling: Principles and Practice," Course Notes, SIGGRAPH 2001.
- B. Mirtich, "Fast and Accurate Computation of Polyhedral Mass Properties," Journal of Graphics Tools, volume 1, number 2, 1996.
- D. Baraff, "Dynamic Simulation of Non-Penetrating Rigid Bodies", Ph.D. thesis, Cornell University, 1992.
- B. Mirtich and J. Canny, "Impulse-based Simulation of Rigid Bodies," in Proceedings of 1995 Symposium on Interactive 3D Graphics, April 1995.
- B. Mirtich, "Impulse-based Dynamic Simulation of Rigid Body Systems," Ph.D. thesis, University of California, Berkeley, December, 1996.
- B. Mirtich, "Hybrid Simulation: Combining Constraints and Impulses," in Proceedings of First Workshop on Simulation and Interaction in Virtual Environments, July 1995.
- COMP259 Rigid Body Simulation Slides, Chris Vanderknyff 2004
- Rigid Body Dynamics (course slides), M Müller-Fischer 2005, ETHZ Zurich