

Sparsity in Deep Learning Abhinav Bhatele, Daniel Nichols

Announcements

- Interim report for the project is due on April 17
- Midterm is on April 10

Why do we need sparsity?

- Less parameters can mean less computation and memory
- A lot of parameters are not needed
 - ConvNet
 - Many parameters are redundant
- Too many parameters can lead to overfitting
- Too few can lead to a loss an accuracy

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• Denil, et. al. "Predicting Parameters in Deep Learning" – 95% of parameters could be predicted from 5% in

Types of Sparsity

Model/Structural

Architectural change; sparsity is independent of data during training/inference

Types of Sparsity

Model/Structural

Structural Sparsity

Pruning

- How do we know what weights/activations to remove?
- Data-Free Pruning
 - magnitude
 - merge-and-scale (combine activations with similar corresponding weights)
- Data-Dependent Pruning
 - "Trivial activations" remove activations near zero for most data points
 - Output Sensitivity
 - Merge-and-scale
- Loss / Gradient Dependent Pruning
 - L₀ regularization
 - Remove weights with little changes

Ephemeral Sparsity

When to sparsify?

Before training

Types of Sparsity

UNIVERSITY OF MARYLAND