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Announcements

* Interim report for the project is due on April 17

* Midterm is on April 10
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Why do we need sparsity?

» Less parameters can mean less computation and memory

* A lot of parameters are not needed

* Denil, et. al.Predicting Parameters in Deep Learning” — 95% of parameters could be predicted from 5% in

ConvNet

° Many parameters are redundant

* Too many parameters can lead to overfittin;

* Too few can lead to a loss an accuracy
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Types of Sparsity

Model/Structural

Architectural change; sparsity is
\ independent of data during
training/inference
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Types of Sparsity

Model/Structural Ephemeral

a-a

Sparsity depends on
the input data
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Structural Sparsity

Model/Structural

o

Weight Sparsity

Activation Sparsity

/

SUr
S * DEPARTMENT OF

18

RyLd

.9 COMPUTER SCIENCE

Abhinav Bhatele, Daniel Nichols (CMSC828G)



Pruning

* How do we know what weights/activations to remove!

» Data-Free Pruning

° maghitude

* merge-and-scale (combine activations with similar corresponding weights)
» Data-Dependent Pruning

* “Trivial activations” — remove activations near zero for most data points

* Output Sensitivity

* Merge-and-scale
* Loss / Gradient Dependent Pruning

* L, regularization

* Remove weights with little changes
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Ephemeral Sparsity

Ephemeral

/ Training Only Training and Inference \
\ / Conditional Computatiorx
4y

Sparse Gradients, Optimizer
States, and Regularization

Activations
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When to sparsify?

 Before training
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Types of Sparsity

Model/Structural Ephemeral
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