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Announcements

2

• Interim report for the project is due on April 17

• Midterm is on April 10
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Why do we need sparsity?
• Less parameters can mean less computation and memory

• A lot of parameters are not needed
• Denil, et. al. “Predicting Parameters in Deep Learning” – 95% of parameters could be predicted from 5% in 

ConvNet

• Many parameters are redundant

• Too many parameters can lead to overfitting

• Too few can lead to a loss an accuracy

T. Hoefler et. al. “Sparsity in Deep Learning”
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Types of Sparsity
Model/Structural Ephemeral

Architectural change; sparsity is 
independent of data during 

training/inference
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Types of Sparsity
Model/Structural Ephemeral

Sparsity depends on 
the input data
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Structural Sparsity
Model/Structural

Weight Sparsity Activation Sparsity
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Pruning
• How do we know what weights/activations to remove?
• Data-Free Pruning

• magnitude
• merge-and-scale (combine activations with similar corresponding weights)

• Data-Dependent Pruning
• “Trivial activations” – remove activations near zero for most data points
• Output Sensitivity
• Merge-and-scale

• Loss / Gradient Dependent Pruning
• L0 regularization
• Remove weights with little changes
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Ephemeral Sparsity
Ephemeral

Training Only

Dropout

Training and Inference

Activations
relu

relu

relu

relu

Conditional Computation
Sparse Gradients, Optimizer 

States, and Regularization
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When to sparsify?
• Before training
•
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Types of Sparsity
Model/Structural Ephemeral




