Systems for Machine Learning (CMSC828G)

Optimizing DL Kernels

Abhinav Bhatele, Daniel Nichols

Announcements

• Interim report for the project is due on April 17

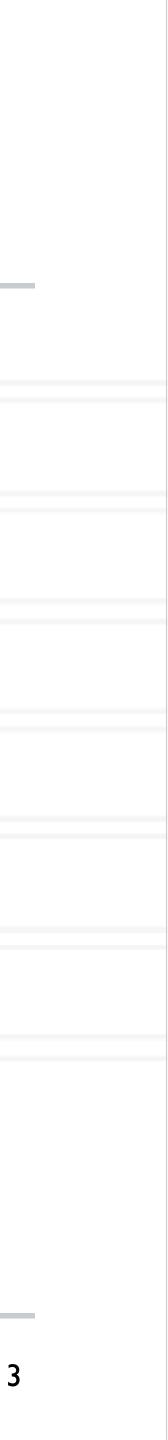
Abhinav Bhatele, Daniel Nichols (CMSC828G)

2

Machine learning modifications for systems optimizations

- Optimizers
- Mixture of experts and grouped GEMMs
- Offloading data to CPU

Abhinav Bhatele, Daniel Nichols (CMSC828G)



Optimizers in deep learning

- Used to adjust parameters to minimize loss
- Critical for effective model convergence
- Types of optimizers:
 - First-order: rely only on first-order gradients
 - Second-order: use both first-order gradients and second-order derivatives (Hessian matrix)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

First-order optimizers

- Advantages:
 - Computationally efficient
 - Scale well for large models
- Examples:
 - SGD: Stochastic Gradient Descent
 - AdamW:Adaptive Moment Estimation with weight decay
- Why is AdamW popular:
 - Effective balance of speed and stability
 - Robust to different hyper parameters such as batch sizes, learning rate, weight decay

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Second-order optimizers

- Advantages:
 - Faster convergence
 - Better suited for complex loss landscapes
- Examples:
 - Newton's method
 - K-FAC: Kronecker-factored Approximate Curvature
 - Shampoo
- Challenges: computationally expensive

Abhinav Bhatele, Daniel Nichols (CMSC828G)

6

UNIVERSITY OF MARYLAND