
Deep Learning Compilers
Abhinav Bhatele, Daniel Nichols



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements

2

• Assignment 2 due March 14th (with extension to March 17th)

• Assignment 1 grades released. Regrade requests by midnight March 14th.

• Project proposal feedback soon



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why DL compilers?
• Enable more optimizations by narrowing to DL kernels

• ML workloads run across a diverse set of hardware
• Optimally mapping computation to hardware is a hard problem

• Many optimizations and hardware support can be done with any DL library



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Why DL compilers?
• Automatically detect optimizations for us

h

+

σ

matmul

X Θ

b

h

σ(XΘ+b)

X Θ b



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

Ideally we support lots of 
input model types: 

PyTorch, Tensorflow, …



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

DAG, let-binding-based, 
functions, lambda, einstein 

notation



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation
Node optimizations, 

algebraic simplifications, 
fusion, sinking, CSE, DCE



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

Tensorcores, CuDNN, 
memory fetching, loop 
fusion, parallelization



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

Halide, LLVM IR, 
polyhedral, custom 



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

AOT, JIT



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
and/or high-level IR

Compute graph optimizations

Backend

Hardware-specific 
optimizations, library calls, 

auto-tuning

Lower to low-level IR

Executable
Code

Code generation

Generate for lots of 
hardware types: NVIDIA 
GPU, iPhone, intel i7, …



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Examples
• TVM
• nGraph
• Glow
• XLA and OpenXLA
• Torch FX
• Torch Dynamo and Inductor
• Tensor Comprehensions (TC)
• TACO




