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Announcements

2

• Assignment 2 due March 14th (with extension to March 17th)

• Assignment 1 grades released. Regrade requests by midnight March 14th.

• Project proposal feedback soon
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Why DL compilers?
• Enable more optimizations by narrowing to DL kernels

• ML workloads run across a diverse set of hardware
• Optimally mapping computation to hardware is a hard problem

• Many optimizations and hardware support can be done with any DL library
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Why DL compilers?
• Automatically detect optimizations for us

h

+

σ

matmul

X Θ

b

h

σ(XΘ+b)

X Θ b



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a DL Compiler

Model Definition

Frontend

Create symbolic representation 
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Ideally we support lots of 
input model types: 

PyTorch, Tensorflow, …
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notation
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memory fetching, loop 
fusion, parallelization
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Generate for lots of 
hardware types: NVIDIA 
GPU, iPhone, intel i7, …
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Examples
• TVM
• nGraph
• Glow
• XLA and OpenXLA
• Torch FX
• Torch Dynamo and Inductor
• Tensor Comprehensions (TC)
• TACO




