Systems for Machine Learning (CMSC828G)

Parallel Training

Abhinav Bhatele, Daniel Nichols

Announcements

• Reminder: project proposals due on March 7 (extended)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

2

Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs

Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs

Parallel/distributed training

- Many opportunities for exploiting parallelism
- Iterative process of training (epochs)
- Many iterations per epoch (mini-batches)
- Many layers in DNNs

Abhinav Bhatele, Daniel Nichols (CMSC828G)

3

Sequential training

while (remaining batches) { Read a single batch

output activations

Compute loss on this batch

Backward pass: matrix multiplies to compute gradients o the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or parameters such that loss is gradually reduced

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Forward pass: perform matrix multiplies to compute

of	

- Divide training data (input batch) amon workers (GPUs)
- Each worker has a full copy of the entir NN and processes different mini-batch
- All reduce operations to synchronize gradients
- Example: PyTorch's DDP, ZeRO

lg			
e			
es			

- Divide training data (input batch) amor workers (GPUs)
- Each worker has a full copy of the entitient NN and processes different mini-batch
- All reduce operations to synchronize gradients
- Example: PyTorch's DDP, ZeRO

ησ				
18				
re				
ies	Batch			

- Divide training data (input batch) amor workers (GPUs)
- Each worker has a full copy of the entitient NN and processes different mini-batch
- All reduce operations to synchronize gradients
- Example: PyTorch's DDP, ZeRO

	Shard 2
Batch	Shard I
	Shard 0

- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different mini-batches
- All reduce operations to synchronize gradients
- Example: PyTorch's DDP, ZeRO

- Divide training data (input batch) among workers (GPUs)
- Each worker has a full copy of the entire NN and processes different mini-batches
- All reduce operations to synchronize gradients
- Example: PyTorch's DDP, ZeRO

Inter-layer parallelism

- Assign entire layers to different processes/GPUs
 - Ideally map contiguous subsets of layers
- managing different layers
- Use a pipeline of mini-batches to enable concurrent execution

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Point-to-point communication (activations and gradients) between processes/GPUs

Inter-layer parallelism

- Assign entire layers to different processes/GPUs
 - Ideally map contiguous subsets of layers
- managing different layers
- Use a pipeline of mini-batches to enable concurrent execution

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Point-to-point communication (activations and gradients) between processes/GPUs

Intra-layer parallelism

- Enables training neural networks that would not fit on a single GPU
- Distribute the work within each layer to multiple processes/GPUs
 - Essentially parallelize matrix operations such as matmuls across multiple GPUs
- Example: Megatron-LM

Intra-layer parallelism

- Enables training neural networks that would not fit on a single GPU
- Distribute the work within each layer to multiple processes/GPUs
 - Essentially parallelize matrix operations such as matmuls across multiple GPUs
- Example: Megatron-LM

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Tensor parallelism

Hybrid parallelism

- Using two or more approaches together in the same parallel framework
- 3D parallelism: use all three
- Popular serial frameworks: pytorch, tensorflow

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO, AxoNN

DDP: Distributed Data Parallelism

- reduce
- Improvement: issues all-reduces as gradient tensors become ready
- Even better: combine multiple all-reduces into a single operation "buckets"

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• Naive solution: wait for the entire backward pass to complete before issuing an all-

FSDP: Fully Sharded Data Parallelism

- **GPUs**
- All-gather the parameters "before" computation starts
- Why does this work?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• "Sharding": Distribute model parameters within a layer or "FSDP unit" across all

Intra-layer (tensor) parallelism

- Enables training neural networks that would not fit on a single GPU
- Distribute the work within each layer to multiple processes/GPUs
 - Essentially parallelize matrix operations such as matrix multiplies across multiple GPUs

Why is LLM training well-suited for HPC?

Abhinav Bhatele (CMSC416 / CMSC616)

oder	Decoder	Clas	sifier	

Why is LLM training well-suited for HPC?

Abhinav Bhatele (CMSC416 / CMSC616)

Parallelizing a matrix multiply kernel

- Distribute matrices A and B
- Each process computes a portion of the result matrix, C
- where you want the final output to be
- Choices:
 - How to divide the matrices: ID or 2D
 - How to arrange the GPUs in a virtual grid: ID, 2D or 3D

Some communication is required depending on how you distribute the matrices and

• ID arrangement of GPUs: Megatron-LM

• 3D arrangement of GPUs: AxoNN

Abhinav Bhatele, Daniel Nichols (CMSC828G)

15

UNIVERSITY OF MARYLAND