
Parallel Training
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements

• Reminder: project proposals due on March 7 (extended)

2

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (mini-batches)

• Many layers in DNNs

3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (mini-batches)

• Many layers in DNNs

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

How to Train Your Neural Network: A Comparative Evaluation
Anonymous Author(s)

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey
ACM Reference Format:
Anonymous Author(s). 2021. How to Train Your Neural Network: A Com-
parative Evaluation. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’21), November 14–19,
2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/nnnn/nnnn.nnnn

1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/nnnn/nnnn.nnnn

of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].

107

108

109

1010

1011

1012

2012 2014 2016 2018 2019 2020

N
um
be
r
of
pa
ra
m
et
er
s

Year

Increase in size of neural networks

AlexNet
VGG-16 GNMT Bert-large

GPT-2

Turing-LM

GPT-3

Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the

1

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallel/distributed training

• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (mini-batches)

• Many layers in DNNs

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

How to Train Your Neural Network: A Comparative Evaluation
Anonymous Author(s)

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey
ACM Reference Format:
Anonymous Author(s). 2021. How to Train Your Neural Network: A Com-
parative Evaluation. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’21), November 14–19,
2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/nnnn/nnnn.nnnn

1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [33, 58, 63, 66, 74] and natural language processing [13,
44, 50, 68] to computational chemistry and computer systems [5,
22, 24, 39, 41, 64, 65, 69]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/nnnn/nnnn.nnnn

of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the
task of deep learning: training large models using multiple GPUs
on a single node [21, 30] or across multiple nodes connected by a
network [14, 25, 36, 43, 51, 57, 72].

107

108

109

1010

1011

1012

2012 2014 2016 2018 2019 2020

N
um
be
r
of
pa
ra
m
et
er
s

Year

Increase in size of neural networks

AlexNet
VGG-16 GNMT Bert-large

GPT-2

Turing-LM

GPT-3

Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [4] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative discussion. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach, and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the

1

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

How to Train Your Neural Network: A Comparative Evaluation SC ’21, November 14–19, 2021, St. Louis, MO, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Summary of Literature Review on Parallel Deep Learning

Framework Type of Parallelism Largest
Accelerator Count

Largest Trained Network
(No. of Parameters)

FlexFlow Hybrid 64 GPUs 24M⇤

PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B

⇤Note: FlexFlow does not provide a parameter size for the largest network it trains. We have
defaulted to the largest network with a known network size cited in their paper.

framework. Convolutions are also parallelized in [46] with a hy-
brid parallelism by extending data parallelism with parallelism
in the spatial domain. For language-based models Megatron[57]
achieves a similar parallelism by partitioning the blocks in trans-
former layers across processors. Megatron has been increasingly
used as language models become more common and larger (see
Figure 1). It has shown up to 74% weak scaling coe�cient on 512
GPUs.

Dividing layer tensor dimensions across processors is, however,
very sensitive to the layer type. For instance, fully connected layers
involve an all-to-all computation and therefore all-to-all commu-
nication, which is more expensive the data parallelism’s allreduce.
Thus, it is hard to generalize coarser grained intra-layer parallelism
for models with custom layers. To combat this some methods look
strictly at compute graph operations and not model layers [27].

3.3 Inter-Layer Parallelism
True inter-layer parallelism can only be achieved by pipelining i.e.
having multiple mini-batches active in the system at any given
instance. There are two ways to achieve pipelining : with and
without �ushing. In this section, we discuss the pros and cons
of both approaches. We also provide an overview of frameworks
that implement these approaches.

3.3.1 Pipelining with Flushing. Pipelining with �ushing divides a
mini-batch into micro-batches of equal size. These micro-batches
are injected one by one into the system. GPUs accumulate gra-
dients from all the micro-batches in the system. A GPU updates
it’s weights only after it has �nished the backward pass of the
last micro-batch. The next mini-batch and its corresponding micro-
batches are injected after all the GPUs have �nished updating their
weights. This approach to pipelining is also called micro-batching.
The number of micro-batches is usually kept to be much larger than
the number of workers so that each worker. Ensuring optimum
hardware utilization requires having a large mini-batch size. To
maintain statistical e�ciency at large mini-batch sizes, the same set
of solutions discussed in Section 3.1.3 can be used. Flushing creates
bubbles in the pipeline which leads to lower hardware utilization.

A load balanced mapping of layers to GPUs is absolutely critical to
maximize performance. The load balancing algorithm must also be
communication-aware. This is because activations and gradients
exchanged at GPU boundaries can be in the magnitudes of GBs for
large neural networks. An e�cient implementation of pipelining
with �ushing must have load balancing support.

This ideawas �rst introduced byHuang et al. in GPipe [21]. Using
GPipe they trained a 557M parameter neural network - AmoebaNet-
B [52] on the ImageNet [54] dataset and surpassed the state of the
art in a number of downstream image classi�cation tasks. TorchG-
Pipe [30] is an uno�cial open-source implementation of GPipe built
on the PyTorch [47] backend. GEMS (GPU-Enabled Memory Aware
Model-Parallelism System) [23] introduces a novel approach to in-
crease hardware utilization. This framework proposes an algorithm
to train two neural networks concurrently using pipelining with-
out �ushing on multiple GPUs. They double the throughput of the
system by overlapping the forward and backward passes of the two
neural networks. We refer the reader to their paper for the details of
their implementation. Recently ZeRO [51] and Megatron [57] also
extended support for this approach towards inter-layer parallelism.
TorchGPipe [30] provides a load balancing algorithm that seeks to
balance the net execution time of the forward and backward pass of
a micro-batch on each GPU. However, their algorithm ignores the
communication overhead of exchanging tensors across GPU bound-
aries. Megatron divides the layers of a transformer across GPUs.
This strategy is optimal because all the layers of a transformer
are identical. ZeRO also provides an identical strategy that divides
the layers equally across GPUs. Additionally they also support a
load balancing algorithm that equalizes GPU memory consump-
tion across GPUs. While Megatron and ZeRO support pipelining,
it is not their preferred mode of execution for parallelizing neural
networks.

3.3.2 Pipelining without Flushing. In this approach, the number
of mini-batches active in the system is kept constant. As soon as
a mini-batch �nishes it’s backward pass on the �rst GPU, a new
mini-batch is injected into the system to maintain full pipeline
occupancy. Unlike pipelining with �ushing, weight updates on a
GPU take place as soon as it is done with the backward pass of a

5

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Sequential training

4

while (remaining_batches) {
 Read a single batch

 Forward pass: perform matrix multiplies to compute
 output activations

 Compute loss on this batch

 Backward pass: matrix multiplies to compute gradients of
 the loss w.r.t. parameters via backpropagation

 Optimizer step: use gradients to update the weights or
 parameters such that loss is gradually reduced
}

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

• Divide training data (input batch) among
workers (GPUs)

• Each worker has a full copy of the entire
NN and processes different mini-batches

• All reduce operations to synchronize
gradients

• Example: PyTorch’s DDP, ZeRO

5

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

• Divide training data (input batch) among
workers (GPUs)

• Each worker has a full copy of the entire
NN and processes different mini-batches

• All reduce operations to synchronize
gradients

• Example: PyTorch’s DDP, ZeRO

5

Batch

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

• Divide training data (input batch) among
workers (GPUs)

• Each worker has a full copy of the entire
NN and processes different mini-batches

• All reduce operations to synchronize
gradients

• Example: PyTorch’s DDP, ZeRO

5

Batch

Shard 2

Shard 1

Shard 0

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

• Divide training data (input batch) among
workers (GPUs)

• Each worker has a full copy of the entire
NN and processes different mini-batches

• All reduce operations to synchronize
gradients

• Example: PyTorch’s DDP, ZeRO

5

Batch

Shard 2

Shard 1

Shard 0

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

• Divide training data (input batch) among
workers (GPUs)

• Each worker has a full copy of the entire
NN and processes different mini-batches

• All reduce operations to synchronize
gradients

• Example: PyTorch’s DDP, ZeRO

5

Data Parallelism

Batch

Shard 2

Shard 1

Shard 0

GPU 2

GPU 1

GPU 0

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

3.1 Deep Learning

Deep learning is a family of machine learning algorithms characterized by the usage of artificial neural
networks (ANNs) as function approximators. As the name suggests, ANNs are inspired by the functioning
of the human brain. The last decade has seen ANNs applied very widely in a variety of fields like computer
vision, natural language processing, bioinformatics, drug design, speech and audio recognition with results
often surpassing the state of the art and in some cases even human expert performance. While, neural
network architectures and training algorithms have existed for decades, it was only in the last few years that
deep learning has rose to prominence, primarily due to the following reasons: (1) increased computational
power via GPGPU hardware accelerators, and (2) availability of large amounts of data.

Artificial Neural Networks ANNs are parameterized function approximation algorithms, and are inspired
by biological neural networks. An ANN is a collection of artificial or simulated neurons (Figure 1 (left)),
each of which is a node in a directed, weighted graph. Each link has a weight which represents the strength
of one node’s influence over another. All of these weights taken together are the parameters of the neural
network. Thus, the words weights and parameters can be used interchangeably. Neural networks learn by
processing known inputs and outputs, and adjusting weight associations between the two to reduce error.
The activation of each neuron is the weighted sum of its inputs from neighboring neurons weighted by the
link weights followed by a non-linear function like sigmoid. The initial input is external data and output
accomplishes the designated task such as prediction.

x1

x2

xm-1

xm

w1

w2

wm-1

wm

Σ

Σ wi * xi + bias

Inputs Weights
Summation

and bias

fa y

Activation
function Outputs

Input
Layer Hidden Layers

Output
Layer

Figure 1: A single neuron (left) and an example artificial neural network (right).

Layer In deep learning, neurons are typically organized into layers. A layer computes a parameterized
non-linear transform of it’s input. Often, the layers are connected in a straight-chain with the ith layer op-
erating on the output of the (i � 1)th layer and the first layer operating on the input dataset. The “deep”
in deep learning stems from the usage of multiple layers essentially increasing the depth of the neural net-
work. Figure 1 (right) shows how neurons organized into different layers are connected to each other. It is
through the use of multiple layers that neural networks are able to learn very useful feature representations
of the input automatically [45].

Learning/Training and Loss Learning or Training is defined as the task of selecting the weight values
which can accurately compute the function that the neural network has to approximate. This is done by
posing the problem as a parameterized optimization of a scalar proxy called the loss. The loss is designed
in a way such that minimizing it leads to accurate function approximation.

Backpropagation Backpropagation is the algorithm by which the gradients/derivatives of the loss w.r.t. the
weights are calculated. Gradients are calculated in the reverse topological order starting from the final layer,
i.e. if layer i consumed the output of layer j, then layer i’s weight gradients are calculated first and used in
the calculation of layer j’s weight gradients. This backward flow of gradients in the layers lends the name
backpropagation to this process.

3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Inter-layer parallelism

• Assign entire layers to different processes/GPUs

• Ideally map contiguous subsets of layers

• Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

• Use a pipeline of mini-batches to enable concurrent execution

6

Intra-layer parallelism: divides the computation of each
layer of the neural network on multiple GPUs. Each GPU
is responsible for partially computing the output activation
of a layer. These partial outputs are pieced together using a
collective communication primitive like all-gather or all-reduce
to be used for the computation of the next layer. For example,
Megatron-LM [2], [5] shards the various matrix multiplications
of a transformer [11] layer across GPUs. While saving
memory, it is prohibited by expensive collective communication
after computing the output activations. Typically, intra-layer
parallelism cannot scale efficiently beyond the confines of
GPUs inside a node connected via a high-speed inter-connect
like NVLink [5].

Inter-layer parallelism: divides the layers of a neural network
among worker GPUs. To achieve parallelism, an input batch
is divided into smaller microbatches. Forward and backward
passes for different microbatches can thus proceed on different
GPUs concurrently. Inter-layer parallelism is often called as
pipelining and the set of GPUs implementing it are called the
pipeline. Prior work has shown that inter-layer parallelism is
inefficient for a large number of GPUs in the pipeline due
to an increase in the idle time in the pipeline [5]. Figure 1
illustrates the working of inter-layer parallelism.

0GPU 0

GPU 1

GPU 2

GPU 3

0

1 2 3

Inter-layer Parallelism with Pipelining

Time

1 2 3

0 1 2 3

0 1 2 30

0

1

1

2 3

2

0

0 4

1

1

2

2

4

4

4

3

3

35

5

5

54

4

4

46 7

6

6

65 6

5

7

7

Fig. 1. Inter-layer parallelism on four GPUs. The green and yellow boxes
represent the forward and backward passes of a microbatch respectively. The
numbers inside each box represent the microbatch number. We assume that
the backward pass takes twice as much time as the forward pass.

Hybrid parallelism: Data parallelism is often combined
with either or both of intra-layer or inter-layer parallelism
to realize hybrid parallelism. For example, Megatron-LM [5]
and DeepSpeed [12], [6] combine all three forms of parallelism
to train large transformer neural networks [11] at extreme scale.
This form of parallelism has been called 3D parallelism in
literature. Prior work [15], [5] has shown 3D parallelism as
the fastest method for training large scale neural networks.

III. DESIGNING A PARALLEL DEEP LEARNING FRAMEWORK

We now present the design of our new framework. AxoNN
combines inter-layer parallelism and data parallelism to scale
parallel training to a large number of GPUs.

A. A hybrid approach to parallel training
The central idea behind AxoNN’s hybrid parallelization of

neural networks is to create a hierarchy of compute resources
(GPUs) by dividing them into equally sized groups. Each group
of GPUs can be treated as a unit that has a full copy of the
network similar to a single GPU in the case of pure data

parallelism. Each group works on different shards of a batch
concurrently to provide data parallelism. GPUs within each
group are used to parallelize the computation associated with
processing a batch shard using inter-layer parallelism. In the
case of AxoNN, we arrange GPUs in a virtual 2D grid topology
as shown in Figure 2. GPUs in each row form a group and are
used to implement inter-layer parallelism within each group.
The groups together are used to provide data parallelism by
processing different shards of a batch in parallel. We use Gdata

and Ginter to denote the number of data-parallel groups and the
number of GPUs inside each data-parallel group respectively.

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Inter-layer Parallel Phase

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Data Parallel Phase

Fig. 2. AxoNN uses hybrid parallelism that combines inter-layer and data
parallelism. In this example, we train a neural network on 12 GPUs in a 4⇥ 3
configuration (4-way inter-layer parallelism and 3-way data parallelism). The
blue and red arrows represent communication of activations and gradients
respectively. In inter-layer parallelism, these gradients are w.r.t. the output
activations, whereas in data parallelism, these gradients are w.r.t. the network
parameters.

Algorithm 1 AxoNN’s hybrid training algorithm for GPU gi,j

in a Ginter ⇥Gdata configuration
1: function TRAIN(neural network, dataset ...)
2: nn shard instantiate neural network shard for gi,j
3: while training has not finished do
4: next batch get next batch from dataset
5: batch shard get batch shard for gi,j
6: DATA PARALLEL STEP(nn shard, batch shard ...)
7: run the optimizer
8: end while
9: end function

10:
11: function DATA PARALLEL STEP(nn shard, batch shard ...)
12: INTER LAYER PARALLEL STEP(nn shard, batch shard ...)
13: All-reduce on nn shard.r~✓
14: end function

Algorithm 1 explains the working of AxoNN’s parallel
algorithm from the point of view of one of the GPUs gi,j in
the 2D virtual grid. Training begins in the TRAIN function (line
1) which takes a neural network specification and a training
dataset as its arguments. For each GPU, we first instantiate a
neural network shard (contiguous subset of layers) that GPU
gi,j will be responsible for in the inter-layer phase (line 12).
In the main training loop (lines 3-7), we divide the input batch
into Gdata shards (line 5) and run the data parallel step on the
corresponding shard of gi,j . The data parallel step first calls
the inter-layer parallel step followed by an all-reduce on the
gradients of the network shard. In the optimizer phase, we run
a standard optimizer used in deep learning such as Adam [16]

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Inter-layer parallelism

• Assign entire layers to different processes/GPUs

• Ideally map contiguous subsets of layers

• Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

• Use a pipeline of mini-batches to enable concurrent execution

6

Intra-layer parallelism: divides the computation of each
layer of the neural network on multiple GPUs. Each GPU
is responsible for partially computing the output activation
of a layer. These partial outputs are pieced together using a
collective communication primitive like all-gather or all-reduce
to be used for the computation of the next layer. For example,
Megatron-LM [2], [5] shards the various matrix multiplications
of a transformer [11] layer across GPUs. While saving
memory, it is prohibited by expensive collective communication
after computing the output activations. Typically, intra-layer
parallelism cannot scale efficiently beyond the confines of
GPUs inside a node connected via a high-speed inter-connect
like NVLink [5].

Inter-layer parallelism: divides the layers of a neural network
among worker GPUs. To achieve parallelism, an input batch
is divided into smaller microbatches. Forward and backward
passes for different microbatches can thus proceed on different
GPUs concurrently. Inter-layer parallelism is often called as
pipelining and the set of GPUs implementing it are called the
pipeline. Prior work has shown that inter-layer parallelism is
inefficient for a large number of GPUs in the pipeline due
to an increase in the idle time in the pipeline [5]. Figure 1
illustrates the working of inter-layer parallelism.

0GPU 0

GPU 1

GPU 2

GPU 3

0

1 2 3

Inter-layer Parallelism with Pipelining

Time

1 2 3

0 1 2 3

0 1 2 30

0

1

1

2 3

2

0

0 4

1

1

2

2

4

4

4

3

3

35

5

5

54

4

4

46 7

6

6

65 6

5

7

7

Fig. 1. Inter-layer parallelism on four GPUs. The green and yellow boxes
represent the forward and backward passes of a microbatch respectively. The
numbers inside each box represent the microbatch number. We assume that
the backward pass takes twice as much time as the forward pass.

Hybrid parallelism: Data parallelism is often combined
with either or both of intra-layer or inter-layer parallelism
to realize hybrid parallelism. For example, Megatron-LM [5]
and DeepSpeed [12], [6] combine all three forms of parallelism
to train large transformer neural networks [11] at extreme scale.
This form of parallelism has been called 3D parallelism in
literature. Prior work [15], [5] has shown 3D parallelism as
the fastest method for training large scale neural networks.

III. DESIGNING A PARALLEL DEEP LEARNING FRAMEWORK

We now present the design of our new framework. AxoNN
combines inter-layer parallelism and data parallelism to scale
parallel training to a large number of GPUs.

A. A hybrid approach to parallel training
The central idea behind AxoNN’s hybrid parallelization of

neural networks is to create a hierarchy of compute resources
(GPUs) by dividing them into equally sized groups. Each group
of GPUs can be treated as a unit that has a full copy of the
network similar to a single GPU in the case of pure data

parallelism. Each group works on different shards of a batch
concurrently to provide data parallelism. GPUs within each
group are used to parallelize the computation associated with
processing a batch shard using inter-layer parallelism. In the
case of AxoNN, we arrange GPUs in a virtual 2D grid topology
as shown in Figure 2. GPUs in each row form a group and are
used to implement inter-layer parallelism within each group.
The groups together are used to provide data parallelism by
processing different shards of a batch in parallel. We use Gdata

and Ginter to denote the number of data-parallel groups and the
number of GPUs inside each data-parallel group respectively.

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Inter-layer Parallel Phase

g0,0

g0,1

g0,2

g1,0

g1,1

g1,2

g2,0

g2,1

g2,2

g3,0

g3,1

g3,2

Data Parallel Phase

Fig. 2. AxoNN uses hybrid parallelism that combines inter-layer and data
parallelism. In this example, we train a neural network on 12 GPUs in a 4⇥ 3
configuration (4-way inter-layer parallelism and 3-way data parallelism). The
blue and red arrows represent communication of activations and gradients
respectively. In inter-layer parallelism, these gradients are w.r.t. the output
activations, whereas in data parallelism, these gradients are w.r.t. the network
parameters.

Algorithm 1 AxoNN’s hybrid training algorithm for GPU gi,j

in a Ginter ⇥Gdata configuration
1: function TRAIN(neural network, dataset ...)
2: nn shard instantiate neural network shard for gi,j
3: while training has not finished do
4: next batch get next batch from dataset
5: batch shard get batch shard for gi,j
6: DATA PARALLEL STEP(nn shard, batch shard ...)
7: run the optimizer
8: end while
9: end function

10:
11: function DATA PARALLEL STEP(nn shard, batch shard ...)
12: INTER LAYER PARALLEL STEP(nn shard, batch shard ...)
13: All-reduce on nn shard.r~✓
14: end function

Algorithm 1 explains the working of AxoNN’s parallel
algorithm from the point of view of one of the GPUs gi,j in
the 2D virtual grid. Training begins in the TRAIN function (line
1) which takes a neural network specification and a training
dataset as its arguments. For each GPU, we first instantiate a
neural network shard (contiguous subset of layers) that GPU
gi,j will be responsible for in the inter-layer phase (line 12).
In the main training loop (lines 3-7), we divide the input batch
into Gdata shards (line 5) and run the data parallel step on the
corresponding shard of gi,j . The data parallel step first calls
the inter-layer parallel step followed by an all-reduce on the
gradients of the network shard. In the optimizer phase, we run
a standard optimizer used in deep learning such as Adam [16]

Pipeline parallelism

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Intra-layer parallelism

• Enables training neural networks that would not fit on a single GPU

• Distribute the work within each layer to multiple processes/GPUs

• Essentially parallelize matrix operations such as matmuls across multiple GPUs

• Example: Megatron-LM

7

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Intra-layer parallelism

• Enables training neural networks that would not fit on a single GPU

• Distribute the work within each layer to multiple processes/GPUs

• Essentially parallelize matrix operations such as matmuls across multiple GPUs

• Example: Megatron-LM

7

Tensor parallelism

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Hybrid parallelism

• Using two or more approaches together in the same parallel framework

• 3D parallelism: use all three

• Popular serial frameworks: pytorch, tensorflow

• Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO, AxoNN

8

Abhinav Bhatele, Daniel Nichols (CMSC828G)

DDP: Distributed Data Parallelism

• Naive solution: wait for the entire backward pass to complete before issuing an all-
reduce

• Improvement: issues all-reduces as gradient tensors become ready

• Even better: combine multiple all-reduces into a single operation — “buckets”

9

Abhinav Bhatele, Daniel Nichols (CMSC828G)

FSDP: Fully Sharded Data Parallelism

• “Sharding”: Distribute model parameters within a layer or “FSDP unit” across all
GPUs

• All-gather the parameters “before” computation starts

• Why does this work?

10

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Different sharding strategies

• Fully replicated: data parallelism

• Fully sharded

• Hybrid of fully replicated (data) + fully sharded

11

10 7

8 9 15

...

...

Sharding Group

Full Sharding
(F = 16)

Local Shard

1

8

FlatParameter
1 2 3 4 5 6 7 8 9 10 11

12
13
14

i Rank i

weight
1 2 3

4 5 6 7
8 9 10 11

0

0

0

9

bias

7

12 13 14

Padding

Figure 3: Full Sharding Across 16 GPUs

(2) Larger Input Size: For �xed communication volume, batch-
ing data and issuing fewer collectives improves perfor-
mance by avoiding the collectives’ launch overhead and
increasing network bandwidth utilization.

For (1), NCCL’s AllGather API requires even input tensor size
and writes outputs into one single tensor. PyTorch’s ProcessGroup

wraps the NCCL API and enhances it by supporting uneven input
tensor sizes across ranks and allowing users to provide a list of
output tensors. The �exibility comes with an e�ciency trade-o�,
as shown in Figure 2 (a). We use All-Gather Base to denote NCCL’s
AllGather behavior, and All-Gather to denote the one that takes a list
of tensors as outputs. The latter incurs additional copies between
the individual output tensors and the consolidated single large
output tensor before and after the communication. Moreover, for
uneven inputs, ProcessGroupmimics AllGather’s behavior using group
Broadcast, which is slower than All-Gather Base. In the experiments,
we created arti�cial unevenness by moving 1 element and 146
elements from rank 1 to rank 0 respectively. The results show that
the All-Gather Base with even input size achieved highest e�ciency.

For (2), Figure 2 (b) �xes the total communication to be 230 ⇡
1B FP32 elements and varies the size per All-Gather, i.e., smaller
AllGather size means more AllGather invocations. Once the AllGather

size decreases below 33M elements, the total communication time
begins increasing rapidly.

Thus, to deliver highly e�cient communications, FSDP orga-
nizes all parameters within one FSDP unit into a large FlatParameter,
where the FlatParameter coalesces the communications of its indi-
vidual parameters and also evenly shards them across ranks. More
speci�cally, the FlatParameter is a 1D tensor constructed by concate-
nating ? �attened original parameters and padding on the right
to achieve a size divisible by the sharding factor. To shard the
FlatParameter, FSDP divides it into equal-sized chunks, where the
number of chunks equals the sharding factor, and assigns one chunk
per rank. The FlatParameter’s gradient inherits the same unsharded
and sharded shapes from the FlatParameter, and the FlatParameter

and its gradient own the underlying storage of the original parame-
ters and their gradients, respectively. Figure 3 depicts one example,
where we use one FSDP unit to shard a 4 ⇥ 3 nn.Linear layer across
16 GPUs. In this case, every GPU only holds one element from the
FlatParameter with the last rank holding the padded value.

0

10 7

8 9 15

...

...

Sharding Group

Replication Group

Hybrid Sharding (F = 8)

0

0 1

Local Shard

FlatParameter

1

1 7

2 3 4 5 6 7

7

i Rank i

Figure 4: Hybrid Sharding on 16 GPUs: GPUs are con�gured
into 2 sharding groups and 8 replication groups

This �atten-concat-chunk algorithm permits each original pa-
rameter to have arbitrary shape while minimizing the required
padding (to be at most � � 1), re�ecting its generality. Moreover,
under this algorithm, the sharded and unsharded FlatParameter and
its gradient have the exact data layout expected by AllGather and
ReduceScatter, respectively. This enables calling the collectives with-
out any additional copies for either the input or output tensors.

More formally, suppose for a model with number of elements,
FSDP constructs # FlatParameters with numels k1, . . . ,k# , whereÕ#
8=1k = . For sharding factor � , the peak parameter memory

contribution is in $ (Õ#
8=1

k8
� + max#8=1k8) because FSDP always

keeps each local sharded FlatParameterwith size k8
� in GPU memory

and must materialize each unsharded FlatParameter with sizek8 one
by one during forward and backward. Since the �rst

Õ#
8=1k8 =

is �xed, the peak parameter memory contribution is determined by
max#8=1k8 . At the same time, the number of collectives per iteration
is in $ (#). This evidences FSDP’s memory-throughput trade-o�:
Finer-grained FlatParameter construction decreases peak memory
but may decrease throughput by requiring more collectives. Users
can control this trade-o� by specifying how to wrap sub-modules
into FSDP units.

3.2.2 Hybrid Sharding.

We refer to the strategy when the sharding factor is greater than
1 but less than, as hybrid sharding, as it combines both sharding
and replication. For global world size, and sharding factor � ,
the parameters are sharded within each group (1, . . . , (, /� and
are replicated within each complementary group '1, . . . ,'� , where
each (8 ,' 9 ✓ {1, . . . ,, } gives the ranks in the sharded or replicated
group, respectively.

For gradient reduction, the single reduce-scatter over all ranks
becomes a reduce-scatter within each of the sharded groups fol-
lowed by an all-reduce within each of the replicated groups to
reduce the sharded gradients. The equivalence follows from the
decomposition

,’
A=1

6A =
, /�’
8=1

’
A 2(8

6A , (1)

where 6A represents the gradient on rank A .

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Intra-layer (tensor) parallelism

• Enables training neural networks that would not fit on a single GPU

• Distribute the work within each layer to multiple processes/GPUs

• Essentially parallelize matrix operations such as matrix multiplies across multiple GPUs

12

Abhinav Bhatele (CMSC416 / CMSC616)

Why is LLM training well-suited for HPC?

13

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs

Abhinav Bhatele (CMSC416 / CMSC616)

Why is LLM training well-suited for HPC?

13

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

Abhinav Bhatele (CMSC416 / CMSC616)

Why is LLM training well-suited for HPC?

13

DecoderEmbedding Decoder Decoder Classifier

Li
ne

ar

Forward
Pass

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

Abhinav Bhatele (CMSC416 / CMSC616)

Why is LLM training well-suited for HPC?

13

DecoderEmbedding Decoder Decoder Classifier

Li
ne

ar

Forward
Pass

Backward
Pass

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallelizing a matrix multiply kernel

• Distribute matrices A and B

• Each process computes a portion of the result matrix, C

• Some communication is required depending on how you distribute the matrices and
where you want the final output to be

• Choices:

• How to divide the matrices: 1D or 2D

• How to arrange the GPUs in a virtual grid: 1D, 2D or 3D

14

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Frameworks

• 1D arrangement of GPUs: Megatron-LM

• 3D arrangement of GPUs: AxoNN

15

