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Parallel/distributed training

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs
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Parallel/distributed training

Increase in size of neural networks

Number of parameters
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Parallel/distributed training

Increase in size of neural networks

® Many opportunities for exploiting parallelism

Number of parameters

® |terative process of training (epochs)

® Many iterations per epoch (mini-batches)

, Largest Largest Trained Network
Framegygk Type of Parallelism Accgelerator Count (No? of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
o M I i D N N PipeDream Inter-Layer 16 GPUs 138M
any aye rs I n S DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Sequential training | H :

e
while (remaining batches) ({ m )
Read a single batch

Forward pass: perform matrix multiplies to compute
output activations

Compute loss on this batch

Backward pass: matrix multiplies to compute gradients of
the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or
parameters such that loss 1s gradually reduced

}
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Data parallelism

® Divide training data (input batch) among
workers (GPUs)

® Each worker has a full copy of the entire
NN and processes different mini-batches

® All reduce operations to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO
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Data parallelism

® Divide training data (input batch) among
workers (GPUs)

® Each worker has a full copy of the entire
NN and processes different mini-batches  Batch

® All reduce operations to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO

S DEPARTMENT OF , S
”""4:,-?._\%5: COM[’UTEROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)



Data parallelism

® Divide training data (input batch) among
workers (GPUs) ‘Shard 2.

® Each worker has a full copy of the entire
NN and processes different mini-batches = Batch Shard |

® All reduce operations to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO
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Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

® Each worker has a full copy of the entire
NN and processes different mini-batches  Batch ‘Shard |

® All reduce operations to synchronize
gradients Shard 0

L1

® Example: PyTorch’s DDP, ZeRO
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Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

® Each worker has a full copy of the entire
NN and processes different mini-batches  Batch - Shard |

® All reduce operations to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO

Data Parallelism
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Inter-layer parallelism

e Assign entire layers to different processes/GPUs

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

® Use a pipeline of mini-batches to enable concurrent execution
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Inter-layer parallelism

e Assign entire layers to different processes/GPUs

Pipeline parallelism
® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

® Use a pipeline of mini-batches to enable concurrent execution

L0 @ 1 89 2 @& 3 @ 4 )
Lo ) 1 ™ 2 @5 3 &) 4 [
) L) (2 @& 3 50 4 & 5 [0
3 [4] 4 [5] 5 [6) 6 |

>

Time

RG> DEPARTMENT OF . T
"_‘%}?.bg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)



Intra-layer parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

e Example: Megatron-LM
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Intra-layer parallelism

Tensor parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

e Example: Megatron-LM
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Hybrid parallelism

e Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO, AxoNN
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DDP: Distributed Data Parallelism

e Naive solution: wait for the entire backward pass to complete before issuing an all-
reduce

®* |mprovement:issues all-reduces as gradient tensors become ready

® Even better: combine multiple all-reduces into a single operation — “buckets”
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FSDP: Fully Sharded Data Parallelism

e “Sharding’: Distribute model parameters within a layer or “FSDP unit” across all
GPUs

o All-gather the parameters “before” computation starts

® Why does this work!?
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Different sharding strategies

e Fully replicated: data parallelism

e Fully sharded
e Hybrid of fully replicated (data) + fully sharded
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Intra-layer (tensor) parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matrix multiplies across multiple GPUs
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Why is LLM training well-suited for HPC?

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

Layers
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Why is LLM training well-suited for HPC?

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier
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Why is LLM training well-suited for HPC?
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Parallelizing a matrix multiply kernel

® Distribute matrices A and B
® Each process computes a portion of the result matrix, C

® Some communication is required depending on how you distribute the matrices and
where you want the final output to be

e Choices:

e How to divide the matrices: ID or 2D

* How to arrange the GPUs in a virtual grid: 1D, 2D or 3D
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Frameworks

® |D arrangement of GPUs: Megatron-LM
e 3D arrangement of GPUs: AxoNN
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