Systems for Machine Learning (CMSC82806)

Parallel Training
Abhinav Bhatele, Daniel Nichols

UNIVERSITY OF

MARYLAND

Announcements

® Reminder: project proposals due on March 7 (extended)

A& DEPARTMENT OF : - :
".;,fﬁb{;;‘ COMPUTEROSCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallel/distributed training

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs

A& DEPARTMENT OF : : :
".;,fﬁb{;;‘ CLOME’\CJ%\EROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs

RYALS 152

Parallel/distributed training

Increase in size of neural networks

Number of parameters

108 IR s Bert-large...........ccco....
VGG-16 GNMT

107 | | | ! 1 |
2012 2014 2016 2018 2019 2020

Year

3 C’DPARL . P . . .
S8 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G) 3

Parallel/distributed training

Increase in size of neural networks

® Many opportunities for exploiting parallelism

Number of parameters

® |terative process of training (epochs)

® Many iterations per epoch (mini-batches)

, Largest Largest Trained Network
Framegygk Type of Parallelism Accgelerator Count (No? of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
o M I i D N N PipeDream Inter-Layer 16 GPUs 138M
any aye rs I n S DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B

SAE> DEPARTMENT OF . N
&8 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G) 3

Ty’

Sequential training | H :

e
while (remaining batches) ({ m)
Read a single batch

Forward pass: perform matrix multiplies to compute
output activations

Compute loss on this batch

Backward pass: matrix multiplies to compute gradients of
the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or
parameters such that loss 1s gradually reduced

}

S DEPARTMENT OF . . .
@ COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G) 4

Data parallelism

® Divide training data (input batch) among
workers (GPUs)

® Each worker has a full copy of the entire
NN and processes different mini-batches

® All reduce operations to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO

S DEPARTMENT OF , S
”""4:,-?._\%5: COM[’UTEROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

® Divide training data (input batch) among
workers (GPUs)

® Each worker has a full copy of the entire
NN and processes different mini-batches Batch

® All reduce operations to synchronize
gradients

® Example: PyTorch’s DDP, ZeRO

S DEPARTMENT OF , S
”""4:,-?._\%5: COM[’UTEROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

® Divide training data (input batch) among
workers (GPUs) ‘Shard 2.

® Each worker has a full copy of the entire
NN and processes different mini-batches = Batch Shard |

® All reduce operations to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO

S DEPARTMENT OF : : :
:r CLOME’&?EROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

® Each worker has a full copy of the entire
NN and processes different mini-batches Batch ‘Shard |

® All reduce operations to synchronize
gradients Shard 0

L1

® Example: PyTorch’s DDP, ZeRO

SR> DEPARTMENT OF : : :
'T"éf:‘f:.;?i: CbOM[’UTEI{OSClENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Data parallelism

® Divide training data (input batch) among
workers (GPUs) Shard 2

® Each worker has a full copy of the entire
NN and processes different mini-batches Batch - Shard |

® All reduce operations to synchronize
gradients Shard 0

® Example: PyTorch’s DDP, ZeRO

Data Parallelism

VAL TN

‘,f COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G) 5

Inter-layer parallelism

e Assign entire layers to different processes/GPUs

® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

® Use a pipeline of mini-batches to enable concurrent execution

L0 @ 1 89 2 @& 3 @ 4)
Lo) 1 ™ 2 @5 3 &) 4 [
) L) (2 @& 3 50 4 & 5 [0
3 [4] 4 [5] 5 [6) 6 |

>

Time

RG> DEPARTMENT OF . T
"_‘%}?.bg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Inter-layer parallelism

e Assign entire layers to different processes/GPUs

Pipeline parallelism
® |deally map contiguous subsets of layers

® Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

® Use a pipeline of mini-batches to enable concurrent execution

L0 @ 1 89 2 @& 3 @ 4)
Lo) 1 ™ 2 @5 3 &) 4 [
) L) (2 @& 3 50 4 & 5 [0
3 [4] 4 [5] 5 [6) 6 |

>

Time

RG> DEPARTMENT OF . T
"_‘%}?.bg COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Intra-layer parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

e Example: Megatron-LM

S DEPARTMENT OF , S
'T"éf:‘f:.;?i: COM[’UTEI{OSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Intra-layer parallelism

Tensor parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matmuls across multiple GPUs

e Example: Megatron-LM

S DEPARTMENT OF , S
”""4:,-?._\%5: COM[’UTEROSCIENC E Abhinav Bhatele, Daniel Nichols (CMSC828G)

Hybrid parallelism

e Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO, AxoNN

S DEPARTMENT OF , . .
'f"éz,-?,v.;?i: COM[’UTEI{ SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

DDP: Distributed Data Parallelism

e Naive solution: wait for the entire backward pass to complete before issuing an all-
reduce

®* |mprovement:issues all-reduces as gradient tensors become ready

® Even better: combine multiple all-reduces into a single operation — “buckets”

RYALS 152

&G DEPARTMENT OF : - :
".;,fﬁb{;;‘ COMPUTEROSCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

FSDP: Fully Sharded Data Parallelism

e “Sharding’: Distribute model parameters within a layer or “FSDP unit” across all
GPUs

o All-gather the parameters “before” computation starts

® Why does this work!?

A& DEPARTMENT OF : SENT
'f"énf“;.;?i: COMPUTEROSCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

10

Different sharding strategies

e Fully replicated: data parallelism

e Fully sharded
e Hybrid of fully replicated (data) + fully sharded

FlatParameter
(0 _ 1 1 v 3 4 4 3 5 V6 1 __7_ _1
_____________________ AN A 0% Sharding G
N N N N : = arding Group
E E [0 [| [7 E E ' Replication Group
| L0 L1 L7 1 E "+ Local Shard
E = e — SN E 1] Ranki
)))
8 [9 [15
0 1 1) . .
____________ . Hybrid Sharding (/"= 8)
k- DEPARTMENT OF : : .
Abhinav Bhatele, Daniel Nichols (CMSC828G) |

)" COMPUTER SCIENCE

Intra-layer (tensor) parallelism

® Enables training neural networks that would not fit on a single GPU

e Distribute the work within each layer to multiple processes/GPUs

® Essentially parallelize matrix operations such as matrix multiplies across multiple GPUs

A& DEPARTMENT OF : - :
".;,fﬁb{;;‘ COMPUTEROSCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

12

Why is LLM training well-suited for HPC?

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

Layers

S DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 13

Why is LLM training well-suited for HPC?

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

Layers

4

Self
attention

= EEm == m
---- - g,

-

Multi-layer perceptron

- Linear

Attention block

2

i

:

. 1
() .
o
o .
O .
O—%
A .
:

3

LSy

e T E E E E T T T T T T

A& DEPARTMENT OF .
'_%). COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 13

llllll

Why is LLM training well-suited for HPC?

Embedding == Decoder == Decoder ® ® ® Decoder == C(lassifier

Layers

4

Self
attention

= EEm == m
---- - g,

-

Multi-layer perceptron

- Linear

Attention block

Decoder

e T E E E E T T T T T T

n

-

(43 K
9,
f= s
—

mi | O Forward
Pass

LSy

Abhinav Bhatele (CMSC416 / CMSC616) |3

Why is LLM training well-suited for HPC?

Layers

Self

attention

Decoder

n
K wW
o
S K
0
= 1 m
7
m | O

S DEPARTMENT OF
"’»:;{'Nai“‘ COMPUTER SCIENCE

Attention block

Forward
Pass

Embedding == Decoder == Decoder © © @

= EEm == m
---- - g,

Linear

¢ s
n
k] W
K
e
m | @)

Abhinav Bhatele (CMSC416 / CMSC616)

Decoder == (lassifier

- Linear

Multi-layer perceptron

n
1K
‘
SR

Backward
Pass

4

e E E E E E T T T T T

|3

Parallelizing a matrix multiply kernel

® Distribute matrices A and B
® Each process computes a portion of the result matrix, C

® Some communication is required depending on how you distribute the matrices and
where you want the final output to be

e Choices:

e How to divide the matrices: ID or 2D

* How to arrange the GPUs in a virtual grid: 1D, 2D or 3D

S DEPARTMENT OF , S
";,f»i;;.b{;;“ COM[’UTEI{ SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

| 4

Frameworks

® |D arrangement of GPUs: Megatron-LM
e 3D arrangement of GPUs: AxoNN

RYALS 152

A& DEPARTMENT OF , S
";,f»i;;.b{;;“ COM[’UTEI{ SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

|5

UNIVERSITY OF

MARYLAND

