
Challenges for High Performance DL
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements

• Class participation: due at 9 AM on the day of the lecture

• Questions / Discussion topics: every lecture

• Short presentation: once in the semester

2

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Zaratan CPU compute node

3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Zaratan racks / cabinets

4

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Multipliers for flops

• Floating point operations: flops

• Floating point operations per second: flop/s

5

https://en.wikipedia.org/wiki/Floating_point_operations_per_second

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Empirical versus model flops

• Model flops: calculated analytically by looking at the code and counting the number of
floating point operations

• Empirical flops: obtained using performance tools that inspect hardware counters
(registers)

• For example, PAPI_FP_OPS on CPUs

6

Abhinav Bhatele, Daniel Nichols (CMSC828G)

How do you calculate flop/s?

• Time a certain code region or kernel and gather/calculate empirical or model flops
for the same region

7

flop/s =
flops
time

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Vendor advertised vs. actual flop/s

• Sustained flops on A100: 280 Tflop/s
(90% of peak)

• Sustained flops on H100: 813 Tflop/s
(82% of peak)

• Sustained flop/s on MI250X: 125 Tflop/s
on 1 GCD (65% of peak)

8

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

NVIDIA A100 TENSOR CORE GPU | DATA SHEET | JUN21 | 1

The Most Powerful Compute Platform for
Every Workload
The NVIDIA A100 Tensor Core GPU delivers unprecedented
acceleration—at every scale—to power the world’s highest-
performing elastic data centers for AI, data analytics, and high-
performance computing (HPC) applications. As the engine of
the NVIDIA data center platform, A100 provides up to 20X higher
performance over the prior NVIDIA Volta™ generation. A100 can
efficiently scale up or be partitioned into seven isolated GPU
instances with Multi-Instance GPU (MIG), providing a unified
platform that enables elastic data centers to dynamically adjust
to shifting workload demands.

NVIDIA A100 Tensor Core technology supports a broad range
of math precisions, providing a single accelerator for every
workload. The latest generation A100 80GB doubles GPU memory
and debuts the world’s fastest memory bandwidth at 2 terabytes
per second (TB/s), speeding time to solution for the largest
models and most massive datasets.

A100 is part of the complete NVIDIA data center solution that
incorporates building blocks across hardware, networking,
software, libraries, and optimized AI models and applications
from the NVIDIA NGC™ catalog. Representing the most powerful
end-to-end AI and HPC platform for data centers, it allows
researchers to deliver real-world results and deploy solutions
into production at scale.

NVIDIA A100 TENSOR CORE GPU
Unprecedented Acceleration at Every Scale

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS
(SXM4 AND PCIE FORM FACTORS)

A100
40GB PCIe

A100
80GB PCIe

A100
40GB SXM

A100
80GB SXM

FP64 9.7 TFLOPS

FP64 Tensor
Core

19.5 TFLOPS

FP32 19.5 TFLOPS

Tensor Float
32 (TF32)

156 TFLOPS | 312 TFLOPS*

BFLOAT16
Tensor Core

312 TFLOPS | 624 TFLOPS*

FP16 Tensor
Core

312 TFLOPS | 624 TFLOPS*

INT8 Tensor
Core

624 TOPS | 1248 TOPS*

GPU Memory 40GB
HBM2

80GB
HBM2e

40GB
HBM2

80GB
HBM2e

GPU Memory
Bandwidth

1,555GB/s 1,935GB/s 1,555GB/s 2,039GB/s

Max Thermal
Design Power
(TDP)

250W 300W 400W 400W

Multi-Instance
GPU

Up to 7
MIGs @

5GB

Up to 7
MIGs @

10GB

Up to 7
MIGs @

5GB

Up to 7
MIGs @

10GB

Form Factor PCIe SXM

Interconnect NVIDIA® NVLink® Bridge
for 2 GPUs: 600GB/s **

PCIe Gen4: 64GB/s

NVLink: 600GB/s
PCIe Gen4: 64GB/s

Server Options Partner and NVIDIA-
Certified Systems™ with

1-8 GPUs

NVIDIA HGX™ A100-
Partner and NVIDIA-

Certified Systems with
4,8, or 16 GPUs

NVIDIA DGX™ A100 with
8 GPUs

* With sparsity

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs

NVIDIA A100 TENSOR CORE GPU | DATA SHEET | JUN21 | 1

The Most Powerful Compute Platform for
Every Workload
The NVIDIA A100 Tensor Core GPU delivers unprecedented
acceleration—at every scale—to power the world’s highest-
performing elastic data centers for AI, data analytics, and high-
performance computing (HPC) applications. As the engine of
the NVIDIA data center platform, A100 provides up to 20X higher
performance over the prior NVIDIA Volta™ generation. A100 can
efficiently scale up or be partitioned into seven isolated GPU
instances with Multi-Instance GPU (MIG), providing a unified
platform that enables elastic data centers to dynamically adjust
to shifting workload demands.

NVIDIA A100 Tensor Core technology supports a broad range
of math precisions, providing a single accelerator for every
workload. The latest generation A100 80GB doubles GPU memory
and debuts the world’s fastest memory bandwidth at 2 terabytes
per second (TB/s), speeding time to solution for the largest
models and most massive datasets.

A100 is part of the complete NVIDIA data center solution that
incorporates building blocks across hardware, networking,
software, libraries, and optimized AI models and applications
from the NVIDIA NGC™ catalog. Representing the most powerful
end-to-end AI and HPC platform for data centers, it allows
researchers to deliver real-world results and deploy solutions
into production at scale.

NVIDIA A100 TENSOR CORE GPU
Unprecedented Acceleration at Every Scale

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS
(SXM4 AND PCIE FORM FACTORS)

A100
40GB PCIe

A100
80GB PCIe

A100
40GB SXM

A100
80GB SXM

FP64 9.7 TFLOPS

FP64 Tensor
Core

19.5 TFLOPS

FP32 19.5 TFLOPS

Tensor Float
32 (TF32)

156 TFLOPS | 312 TFLOPS*

BFLOAT16
Tensor Core

312 TFLOPS | 624 TFLOPS*

FP16 Tensor
Core

312 TFLOPS | 624 TFLOPS*

INT8 Tensor
Core

624 TOPS | 1248 TOPS*

GPU Memory 40GB
HBM2

80GB
HBM2e

40GB
HBM2

80GB
HBM2e

GPU Memory
Bandwidth

1,555GB/s 1,935GB/s 1,555GB/s 2,039GB/s

Max Thermal
Design Power
(TDP)

250W 300W 400W 400W

Multi-Instance
GPU

Up to 7
MIGs @

5GB

Up to 7
MIGs @

10GB

Up to 7
MIGs @

5GB

Up to 7
MIGs @

10GB

Form Factor PCIe SXM

Interconnect NVIDIA® NVLink® Bridge
for 2 GPUs: 600GB/s **

PCIe Gen4: 64GB/s

NVLink: 600GB/s
PCIe Gen4: 64GB/s

Server Options Partner and NVIDIA-
Certified Systems™ with

1-8 GPUs

NVIDIA HGX™ A100-
Partner and NVIDIA-

Certified Systems with
4,8, or 16 GPUs

NVIDIA DGX™ A100 with
8 GPUs

* With sparsity

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Four types of DL workloads

• Training: also called pre-training

• Fine-tuning

• Inference: serving the model

• Offline: single user

• Online: single or multiple users

9

Abhinav Bhatele (CMSC416 / CMSC616)

Compute work in transformer models

10

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs

Abhinav Bhatele (CMSC416 / CMSC616)

Compute work in transformer models

10

DecoderEmbedding Decoder Decoder Classifier

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

Abhinav Bhatele (CMSC416 / CMSC616)

Compute work in transformer models

10

DecoderEmbedding Decoder Decoder Classifier

Li
ne

ar

Forward
Pass

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

Abhinav Bhatele (CMSC416 / CMSC616)

Compute work in transformer models

10

DecoderEmbedding Decoder Decoder Classifier

Li
ne

ar

Forward
Pass

Backward
Pass

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

od
er Linear Linear LinearLinear

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

to synchronize their weights by issuing all-reduces on their
gradients after every batch.

B. Three-dimensional Tensor Parallelism
Next, we describe how each GPU group, composed of

Gtensor GPUs, parallelizes the work within their copy of the
neural network. Each GPU group processes the batch shard
assigned to them. Tensor parallelism refers to parallelizing the
computation within every layer of the neural network across
GPUs. We first describe the parallelization of a single layer
using our approach. We use the fully-connected (FC) or Linear
layer as an example.

Let us first look at the serial computation in an FC layer.
Each FC layer computes one half-precision matrix multiplica-
tion in the forward pass and two half-precision matrix multipli-
cations in the backward pass. The inputs to the matrix-multiply
(MM) kernel in the forward pass are the input activation, I , and
the layer’s weight matrix, W . The output of the MM operation
is the output activation, O. This is illustrated in Figure 1. In
the backward pass, there are two MM operations, @L

@O
⇥W

>

and I
>⇥ @L

@O
, where L is the training loss. Thus, parallelizing

an FC layer requires parallelizing these three MM operations
across multiple GPUs.

OI

W

Input
Activations

Weights

Output
Activations

k

n

m

k

Fig. 1: Computation in the forward pass of a fully-connected
(FC) layer with input I and layer weights W . The output, O
is a matrix multiplication of I and W . We assume I 2 Rm⇥k,
W 2 Rk⇥n, and O 2 Rm⇥n.

In order to parallelize a single matrix-multiply computation
across several GPUs, we adapt Agarwal et al.’s 3D parallel
matrix multiplication algorithm [5]. As noted in Section III-A,
we need to exploit Gtensor GPUs for tensor parallelism within
each group. Since Agarwal’s algorithm uses a virtual 3D grid
of processes, we first organize the Gtensor GPUs further into a
virtual three-dimensional (3D) grid of dimensions Gx⇥Gy ⇥
Gz . As an example, we show a topology of eight GPUs with
Gx = Gy = Gz = 2 in Figure 2. Additionally, we use gi,j,k

to refer to a GPU in the grid.
Now let us discuss how we use Agarwal’s algorithm to

distribute input activations, I , and weights, W , onto this 3D
grid of GPUs. We do 2D decompositions of both I and W into
sub-blocks and map them to orthogonal planes of the 3D grid.
For example, in Figure 2, we observe that W is partitioned
along the X and Y -axes, and replicated along the Z-axis. This
means that GPUs groups in each XY plane have a copy of

2 3

0 1

6 7

4 5

W00 W01

W10 W11

W00 W01

W10 W11

I00

I10

I01

I11

I00

I10

I01

I11

Gx

I00 * W01

I01 * W11

O01All-reduce

O00 O01

O10 O11

O00 O01

O10 O11

W I O

GPUs

Gy

Gz

X

Y

Z

Fig. 2: Parallelization of an FC layer with Agarwal’s 3D
parallel matrix multiplication algorithm [5] on eight GPUs
organized in a 2 ⇥ 2 ⇥ 2 topology. We use Gx, Gy , and Gz

to refer to the number of GPUs along the three dimensions of
the virtual grid topology.

W . The I matrix on the other hand is partitioned along the X

and Z-axes, and replicated along the Y -axis. Once each GPU
has a unique sub-block of I and W, it can compute a portion
of the O matrix, which can be aggregated across GPUs in the
Y direction using all-reduces.

In our adapted version of Agarwal’s algorithm, instead of
replicating W along the Z-axis, we further shard W along
the Z-axis and denote these sub-shards as Ŵ . This is done
to save memory as the set of GPUs along the Z-axis will
only have to store the gradients and optimizer states of
unique shards of the weights. We now discuss how we adapt
Agarwal’s algorithm to work with sharded weight matrices
in the forward and the backward passes of our 3D tensor
parallel algorithm. We illustrate the forward pass in function
TENSOR_PARALLEL_FORWARD_PASS of Algorithm 1 from
the perspective of GPU gi,j,k.

Algorithm 1 Our 3D tensor parallelism for gi,j,k in a Gx ⇥
Gy ⇥Gz grid. We highlight all communication operations in
blue.

1: function TENSOR PARALLEL FORWARD PASS(Ik,j , Ŵj,i)

2: Wj,i = ALL-GATHERz(Ŵj,i)

3: Ôk,i = Ik,j ⇥Wj,i

4: Ok,i ALL-REDUCEy(Ôk,i)
5: // Cache Ik,j and Wj,i for the backward pass
6: return Ok,i

7: end function
8:
9: function TENSOR PARALLEL BACKWARD PASS(@L

@Ok,i
)

10: Retrieve Ik,j and Wj,i from cache

11: @L

@Ik,j
 ALL-REDUCEx(@L

@Ok,i
⇥W

>
j,i)

12: @L

@Ŵj,i
 REDUCE-SCATTERz(I>k,j ⇥ @L

@Ok,i
)

13: return @L

@Ik,j
, @L

@Ŵj,i

14: end function

The inputs to this function are Ik,j and Ŵj,i i.e. the shards
of I and W mapped to GPU gi,j,k by our algorithm. Since we
have performed an extra sharding of W along the Z-axis, we
first bring back the full required sub-block of W by issuing

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

11

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

11

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

11

Memory constraints

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

11

Memory constraints

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

11

Memory constraints

Speed

Abhinav Bhatele (CMSC416 / CMSC616)

Two main challenges: memory and speed

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

• OpenAI’s GPT 4.0 is estimated to have 1.8 trillion parameters

• Meta’s Llama-3.1-405B has more than 400 billion parameters

11

Memory constraints

Speed

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Memory challenges

• Challenge: fit larger and larger models on hardware with limited memory?

• Store and compute in reduced precision

• Lower precision: fp32 → fp16 / bf16

• Mixed-precision: do some operations in fp32 and some in fp16, also store some quantities in fp32 and some in
fp16

• Alternative approach: use distributed memory

• Train/fine-tune/infer on more than one GPU/node

12

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Speed: single GPU performance
• Challenge: Ensure great performance on a GPU

• Running compute kernels efficiently

• Moving data efficiently (global to shared/local memory within the GPU or CPU ⇆ GPU)

• Systems approaches: optimizing kernel performance, reducing amount of data moved

• e.g. flash attention

• ML approaches: alternative methods to solve the same problem

• Reducing model size: quantization, exploiting sparsity, mixture-of-experts, …

• e.g. first (Adam) and second-order (KFAC, Shampoo, …) optimizers

13

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Speed: multi-GPU or parallel performance

• Challenge: ensuring scalability as model sizes and number of GPUs used increases

• Challenge: communication / data movement overheads

• Approaches:

• Clever parallel algorithms: data / tensor / pipeline / hybrid

• Optimizing collective operations

• Enabling / ensuring compute-communication overlap

14

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Speed: I/O performance

• Challenges: ensuring that data movement from / to disk is not a bottleneck

• Issue: data is read into the CPU memory and then needs to be transferred into GPU
memory

15

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Challenges specific to the workload

• Training / Fine-tuning: scalability might be a larger issue

• Inference: could get away with a smaller number of GPUs

• Offline: latency and throughput

• Time to first token, throughput (tokens/sec)

• Online: handling lots of requests

• Fairness (scheduling of requests)

16

