Systems for Machine Learning (CMSC828G)

Challenges for High Performance DL Abhinav Bhatele, Daniel Nichols

Announcements

- Class participation: due at 9 AM on the day of the lecture
 - Questions / Discussion topics: every lecture
 - Short presentation: once in the semester

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Zaratan CPU compute node

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Zaratan racks / cabinets

Multipliers for flops

- Floating point operations: flops
- Floating point operations per second: floating

https://en.wikipedia.org/wiki/Floating_point_operations_per_second

-
Name +
iloFLOPS
negaFLOPS
igaFLOPS
eraFLOPS
etaFLOPS
xaFLOPS
ettaFLOPS
ottaFLOPS
onnaFLOPS
uettaFLOPS

Name +	Unit +	Value +
kiloFLOPS	kFLOPS	10 ³
megaFLOPS	MFLOPS	10 ⁶
gigaFLOPS	GFLOPS	10 ⁹
teraFLOPS	TFLOPS	10 ¹²
petaFLOPS	PFLOPS	10 ¹⁵
exaFLOPS	EFLOPS	10 ¹⁸
zettaFLOPS	ZFLOPS	10 ²¹
yottaFLOPS	YFLOPS	10 ²⁴
ronnaFLOPS	RFLOPS	10 ²⁷
quettaFLOPS	QFLOPS	10 ³⁰

Empirical versus model flops

- Model flops: calculated analytically by I floating point operations
- Empirical flops: obtained using perform (registers)
 - For example, PAPI_FP_OPS on CPUs

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Model flops: calculated analytically by looking at the code and counting the number of

• Empirical flops: obtained using performance tools that inspect hardware counters

How do you calculate flop/s?

for the same region

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• Time a certain code region or kernel and gather/calculate empirical or model flops

Vendor advertised vs. actual flop/s

- Sustained flops on A100: 280 Tflop/s (90% of peak)
- Sustained flops on H100:813 Tflop/s (82% of peak)
- Sustained flop/s on MI250X: I25 Tflop/s on I GCD (65% of peak)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf

	A100 40GB PCIe	A100 80GB PCIe	A100 40GB SXM	A1 80GE
FP64	9.7 TFLOPS			
FP64 Tensor Core	19.5 TFLOPS			
FP32	19.5 TFLOPS			
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*			
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*			
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*			
INT8 Tensor Core		624 TOPS	1248 TOPS*	

Four types of DL workloads

- Training: also called pre-training
- Fine-tuning
- Inference: serving the model
 - Offline: single user
 - Online: single or multiple users

Compute work in transformer models

Abhinav Bhatele (CMSC416 / CMSC616)

oder	Decoder	Class	ifier	

Compute work in transformer models

Z 🖌 W₁₀ W₁₁ Layers Decoder Embedding Self Decoder Linear Linear attention Attention block n W inear-

0

Forward

Pass

m

Abhinav Bhatele (CMSC416 / CMSC616)

Z 🖌 W₁₀ W₁₁ Compute work in x would be wou Layers Embedding Decoder Self Decoder Linear Linear attention Attention block n W -inear

0

Forward

Pass

m

Abhinav Bhatele (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

- The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion parameters

Abhinav Bhatele (CMSC416 / CMSC616)

• On a single node (with four H100 GPUs): around ~16 billion parameters model

- The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion parameters

Abhinav Bhatele (CMSC416 / CMSC616)

• On a single node (with four H100 GPUs): around ~16 billion parameters model

Memory constraints

- The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion parameters

• Training a 16B parameter would take 33 years!

Abhinav Bhatele (CMSC416 / CMSC616)

• On a single node (with four H100 GPUs): around ~16 billion parameters model

Memory constraints

- The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion parameters

• Training a 16B parameter would take 33 years!

Abhinav Bhatele (CMSC416 / CMSC616)

• On a single node (with four H100 GPUs): around ~16 billion parameters model

Memory constraints

- The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion parameters
- On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

- OpenAl's GPT 4.0 is estimated to have 1.8 trillion parameters
- Meta's Llama-3.1-405B has more than 400 billion parameters

Memory constraints

Speed

Abhinav Bhatele (CMSC416 / CMSC616)

Memory challenges

- Challenge: fit larger and larger models on hardware with limited memory?
- Store and compute in reduced precision
 - Lower precision: fp32 → fp16 / bf16
 - fp16
- Alternative approach: use distributed memory
 - Train/fine-tune/infer on more than one GPU/node

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• Mixed-precision: do some operations in fp32 and some in fp16, also store some quantities in fp32 and some in

Speed: single GPU performance

- Challenge: Ensure great performance on a GPU
- Running compute kernels efficiently
- - e.g. flash attention
- ML approaches: alternative methods to solve the same problem
 - Reducing model size: quantization, exploiting sparsity, mixture-of-experts, ...
 - e.g. first (Adam) and second-order (KFAC, Shampoo, ...) optimizers

• Moving data efficiently (global to shared/local memory within the GPU or CPU \Leftrightarrow GPU)

• Systems approaches: optimizing kernel performance, reducing amount of data moved

Speed: multi-GPU or parallel performance

- Challenge: communication / data movement overheads
- Approaches:
 - Clever parallel algorithms: data / tensor / pipeline / hybrid
 - Optimizing collective operations
 - Enabling / ensuring compute-communication overlap

Challenge: ensuring scalability as model sizes and number of GPUs used increases

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Speed: I/O performance

- Challenges: ensuring that data movement from / to disk is not a bottleneck
- memory

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Issue: data is read into the CPU memory and then needs to be transferred into GPU

Challenges specific to the workload

- Training / Fine-tuning: scalability might be a larger issue
- Inference: could get away with a smaller number of GPUs
 - Offline: latency and throughput
 - Time to first token, throughput (tokens/sec)
 - Online: handling lots of requests
 - Fairness (scheduling of requests)

UNIVERSITY OF MARYLAND