
Transformers, Profiling, and Performance Modeling
Abhinav Bhatele, Daniel Nichols

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Announcements

2

• Assignment 1
• Due Feb. 25th at midnight

• Office hours (IRB 3119)
• Tuesday (today) 2/18 3-4pm (zoom only)

• Thursday 2/20 10-11am

• Groups due March 4th

• No class this Thursday

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Sequence Modeling
• Sequence modeling

• Given a sequence of values (i.e. tokens or words) we want to model the probability
they are in some language/text distribution

• Instead of the joint distribution, we can model conditional probabilities

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Transformers
• Introduced in 2017, “Attention Is All You Need,” Vaswani et. al.

• Uses self-attention to model context

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[456, 721, …] ∈ NS

We start with a sequence of S
token ids

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

The embedding layer maps
token ids to vectors in the

model dimension C

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

Transformer layers are not
aware of position, so add

encoded position information

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

Normalize each row i.e.
sequence independently

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We want to map tokens
(queries) to values based on

the most similar keys

place

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We can answer this query
with a scaled dot product of

the similar values

place

0.6*v3+0.4*vn

But how much should we
scale this dot product?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We can answer this query
with a scaled dot product of

the similar values

place

0.6*v3+0.4*vn

But how much should we
scale this dot product?

Compute dot product of the
query with all the keys

Get probabilities from dot
products

Scale the values based on
probabilities

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Matrix multiplication gives
query-key dot products

Q

K

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Softmax of each row yields
probabilities

Q

K

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Finally, we can scale the values
to get the final result

Q

K

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Multihead Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Compute multiple attentions and concatenate them
• A projection matrix is used to project back to the model’s embedding dimension

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

Normalize each row i.e.
sequence independently

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

A two layer MLP, usually
mapping to 4*C and then back

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

Repeat the transformer block
many times

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxC

Normalize each row i.e.
sequence independently

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈
RSxV

A task specific linear layer at
the end

For language modeling, we
project back to size of the

vocab V

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Performance Metrics
• Wall time

• Fixed time-to-solution

• Time per batch

• Throughput

• Utilization

• Flops/s

• Peak memory used

• Parallel speedup and efficiency

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Flops/s
• Flops/s – floating point operations per second

• Theoretical vs achieved

• Function of the algorithm, data, and hardware

• Example: saxpy – a*x+y

+ =

x y z

a

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Flops/s
• Flops/s – floating point operations per second

• Theoretical vs achieved

• Function of the algorithm, data, and hardware

• Example: matrix multiplication
A C

B

M

P
P

N

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

+ =

x y z

a

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

+ =

x y z

a

This is independent of the
vector sizes!

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

A C

B

N

N

N

N

The amount of work we can
do per data loaded is

dependent on the matrix size!

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

• Attainable performance
• Hardware has peak performance π flops/s
• Hardware has peak memory bandwidth β bytes/s

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

• Attainable performance
• Roofline model

image: https://docs.nersc.gov/tools/performance/roofline/

Usually applied to individual
kernels, but can be applied to
groups of operations as well

https://docs.nersc.gov/tools/performance/roofline/

Abhinav Bhatele, Daniel Nichols (CMSC828G)

An Example Roofline Model
• A100

• 312 teraflops fp16 performance

• 1555 GB/s bandwidth

• Matrix Multiplication
N=3328

312 tflops/s

Past N=3328 we are now
compute bound

Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner

k1 k2 k4

v1 v2 v4

there’s no like

there’s no like

k3

v3

place

place

QS

C

KS

C

VS

C

Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner

k1 k2 k4

v1 v2 v4

there’s no like

there’s no like

k3

v3

place

place

KS

VS

k5

v6

home

home

Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner

k1 k2 k4

v1 v2 v4

there’s no like

there’s no like

k3

v3

place

place

KS

VS

k5

v6

home

home

Is the memory-compute
trade-off worth it?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• Arithmetic intensity of KV calculation for new token

We’re in the memory bound
region

Ridge: computing KV for one
token takes the same as 208

tokens

Chen, Carol “Transformer Inference Arithmetic”

Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPU Utilization
• How effectively are you using your resources?
• Occupancy

• Ratio of active warps to total per SM

• Utilization
• Percentage of samples where kernel is running

• torch.cuda.utilization()

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Parallel Scaling and Efficiency
• Speedup

• Efficiency

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Performance Space
• Performance depends on more than just processor count

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling

https://cvw.cac.cornell.edu/parallel/efficiency/scaling

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Strong Scaling
• Increase resources, fix problem size

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling

https://cvw.cac.cornell.edu/parallel/efficiency/scaling

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Weak Scaling
• Increase problem size proportional to resources

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling

https://cvw.cac.cornell.edu/parallel/efficiency/scaling

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Profiling

with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
 with record_function("model_inference"):
 model(inputs)

• PyTorch provides a profiler internally for measuring performance
• Simple python context
• https://pytorch.org/docs/main/profiler.html

https://pytorch.org/docs/main/profiler.html

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Profiling
• PyTorch provides a profiler internally for measuring performance
• Simple python context
• https://pytorch.org/docs/main/profiler.html

with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
 record_shapes=True,
 on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)
)as prof:
 with record_function("model_inference"):
 model(inputs)

Output for inspection in
tensorboard

https://pytorch.org/docs/main/profiler.html

