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Announcements

2

• Assignment 1
• Due Feb. 25th at midnight

• Office hours (IRB 3119)
• Tuesday (today) 2/18 3-4pm (zoom only)

• Thursday 2/20 10-11am

• Groups due March 4th

• No class this Thursday
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Sequence Modeling
• Sequence modeling

• Given a sequence of values (i.e. tokens or words) we want to model the probability 
they are in some language/text distribution

• Instead of the joint distribution, we can model conditional probabilities
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Transformers
• Introduced in 2017, “Attention Is All You Need,” Vaswani et. al.

• Uses self-attention to model context
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An Example Architecture
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An Example Architecture

…

embedding
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encoding
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MultiHead
Attention

FeedForward
Network

Task Head

[456, 721, …] ∈ NS

We start with a sequence of S 
token ids
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxC

The embedding layer maps 
token ids to vectors in the 

model dimension C
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxC

Transformer layers are not 
aware of position, so add 

encoded position information
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxC

Normalize each row i.e. 
sequence independently
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Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place
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Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We want to map tokens 
(queries) to values based on 

the most similar keys

place



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We can answer this query 
with a scaled dot product of 

the similar values

place

0.6*v3+0.4*vn

But how much should we 
scale this dot product?



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Attention
• Determine how much tokens should “attend” to other tokens
• Consider a hashmap of our tokens

k1 k2 … kn

v1 v2 … vn

there’s no home

there’s no home

k3

v3

place

place

q1

We can answer this query 
with a scaled dot product of 

the similar values

place

0.6*v3+0.4*vn

But how much should we 
scale this dot product?

Compute dot product of the 
query with all the keys

Get probabilities from dot 
products

Scale the values based on 
probabilities
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Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Matrix multiplication gives 
query-key dot products

Q

K
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Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Softmax of each row yields 
probabilities

Q

K
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Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Create weights (Wq, Wk, Wv) using linear transformations (Q=XWq, K=XWk, V=XWv)

Finally, we can scale the values 
to get the final result

Q

K
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Multihead Attention
• Determine how much tokens should “attend” to other tokens

• Can be done in batches quite efficiently

• Compute multiple attentions and concatenate them
• A projection matrix is used to project back to the model’s embedding dimension
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An Example Architecture
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[e1, e2, e3, …] ∈ 
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Normalize each row i.e. 
sequence independently
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxC

A two layer MLP, usually 
mapping to 4*C and then back
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxC

Repeat the transformer block 
many times
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An Example Architecture

…

embedding
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[e1, e2, e3, …] ∈ 
RSxC

Normalize each row i.e. 
sequence independently
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An Example Architecture

…

embedding

positional
encoding

LayerNorm LayerNorm LayerNorm

MultiHead
Attention

FeedForward
Network

Task Head

[e1, e2, e3, …] ∈ 
RSxV

A task specific linear layer at 
the end

For language modeling, we 
project back to size of the 

vocab V
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Performance Metrics
• Wall time

• Fixed time-to-solution

• Time per batch

• Throughput

• Utilization

• Flops/s

• Peak memory used

• Parallel speedup and efficiency
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Flops/s
• Flops/s – floating point operations per second

• Theoretical vs achieved 

• Function of the algorithm, data, and hardware

• Example: saxpy – a*x+y

+ =

x y z

a
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Flops/s
• Flops/s – floating point operations per second

• Theoretical vs achieved 

• Function of the algorithm, data, and hardware

• Example: matrix multiplication
A C

B

M

P
P

N
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Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and 

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

+ =

x y z

a



Abhinav Bhatele, Daniel Nichols (CMSC828G)

Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and 

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

+ =

x y z

a

This is independent of the 
vector sizes!
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Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and 

hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

A C

B

N

N

N

N

The amount of work we can 
do per data loaded is 

dependent on the matrix size!
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Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

• Attainable performance
• Hardware has peak performance π flops/s
• Hardware has peak memory bandwidth β bytes/s
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Compute vs Memory Bound
• Is code being bottlenecked by data loading or compute?
• Important for algorithm design, optimizations, and hardware selection
• Arithmetic intensity

• Ratio of arithmetic instructions to bytes loaded

• Property of algorithm

• Attainable performance
• Roofline model

image: https://docs.nersc.gov/tools/performance/roofline/ 

Usually applied to individual 
kernels, but can be applied to 
groups of operations as well

https://docs.nersc.gov/tools/performance/roofline/
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An Example Roofline Model
• A100

• 312 teraflops fp16 performance

• 1555 GB/s bandwidth

• Matrix Multiplication
N=3328

312 tflops/s

Past N=3328 we are now 
compute bound



Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner

k1 k2 k4

v1 v2 v4

there’s no like

there’s no like

k3

v3

place

place

QS

C

KS

C

VS

C



Abhinav Bhatele, Daniel Nichols (CMSC828G)

KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner
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KV Caching and Performance Models
• We recompute KV values when we run models in an autoregressive manner

k1 k2 k4

v1 v2 v4

there’s no like

there’s no like

k3

v3

place

place

KS

VS

k5

v6

home

home

Is the memory-compute 
trade-off worth it?
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KV Caching and Performance Models
• Arithmetic intensity of KV calculation for new token 

We’re in the memory bound 
region

Ridge: computing KV for one 
token takes the same as 208 

tokens

Chen, Carol “Transformer Inference Arithmetic”
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GPU Utilization
• How effectively are you using your resources?
• Occupancy

• Ratio of active warps to total per SM

• Utilization
• Percentage of samples where kernel is running

• torch.cuda.utilization()
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Parallel Scaling and Efficiency
• Speedup

• Efficiency
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Performance Space
• Performance depends on more than just processor count

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling 

https://cvw.cac.cornell.edu/parallel/efficiency/scaling
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Strong Scaling
• Increase resources, fix problem size

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling 

https://cvw.cac.cornell.edu/parallel/efficiency/scaling
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Weak Scaling
• Increase problem size proportional to resources

image: https://cvw.cac.cornell.edu/parallel/efficiency/scaling 

https://cvw.cac.cornell.edu/parallel/efficiency/scaling
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Profiling

with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
    with record_function("model_inference"):
        model(inputs)

• PyTorch provides a profiler internally for measuring performance
• Simple python context
• https://pytorch.org/docs/main/profiler.html 

https://pytorch.org/docs/main/profiler.html
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Profiling
• PyTorch provides a profiler internally for measuring performance
• Simple python context
• https://pytorch.org/docs/main/profiler.html 

with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
             record_shapes=True,
             on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)
            )as prof:
    with record_function("model_inference"):
        model(inputs)

Output for inspection in 
tensorboard

https://pytorch.org/docs/main/profiler.html



