Transformers, Profiling, and Performance Modeling Abhinav Bhatele, Daniel Nichols

Announcements

- Assignment I
 - Due Feb. 25th at midnight
- Office hours (IRB 3119)
 - Tuesday (today) 2/18 3-4pm (zoom only)
 - Thursday 2/20 10-11am
- Groups due March 4th
- No class this Thursday

Sequence Modeling

- Sequence modeling
- they are in some language/text distribution

P("There's no place like home") = 0.1P("There's is a place like home") = 0.08P("There's no home place like") = 0.0001

• Instead of the joint distribution, we can model conditional probabilities

$$P(x_{1:i}) = P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_1, x_2) \cdots P(x_i \mid x_{1:i-1})$$

Abhinav Bhatele, Daniel Nichols (CMSC828G)

• Given a sequence of values (i.e. tokens or words) we want to model the probability

Transformers

- Introduced in 2017, "Attention Is All You Need," Vaswani et. al.
 - Uses self-attention to model context

- Determine how much tokens should "attend" to other tokens
- Consider a hashmap of our tokens

- Determine how much tokens should "attend" to other tokens
- Consider a hashmap of our tokens

- Determine how much tokens should "attend" to other tokens
- Consider a hashmap of our tokens

- Consider a hashmap of our tokens

- Determine how much tokens should "attend" to other tokens
- Can be done in batches quite efficiently

Matrix multiplication gives query-key dot products

Abhinav Bhatele, Daniel Nichols (CMSC828G)

K

• Create weights (W_{q}, W_{k}, W_{v}) using linear transformations $(Q=XW_{q}, K=XW_{k}, V=XW_{v})$

- Determine how much tokens should "attend" to other tokens
- Can be done in batches quite efficiently

Abhinav Bhatele, Daniel Nichols (CMSC828G)

K

• Create weights (W_{q}, W_{k}, W_{v}) using linear transformations $(Q=XW_{q}, K=XW_{k}, V=XW_{v})$

$O = \operatorname{softmax}(QK^T)$

- Determine how much tokens should "attend" to other tokens
- Can be done in batches quite efficiently

• Create weights (W_{q}, W_{k}, W_{v}) using linear transformations $(Q=XW_{q}, K=XW_{k}, V=XW_{v})$

$Attn = \operatorname{softmax}(QK^T)V$

Multihead Attention

- Determine how much tokens should "attend" to other tokens
- Can be done in batches quite efficiently
- Compute multiple attentions and concatenate them
 - A projection matrix is used to project back to the model's embedding dimension

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Normalize each row i.e. sequence independently

Abhinav Bhatele, Daniel Nichols (CMSC828G)

A two layer MLP, usually mapping to 4^*C and then back

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Repeat the transformer block many times

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Normalize each row i.e. sequence independently

ead
F
, we the
_

Performance Metrics

- Wall time
 - Fixed time-to-solution
- Time per batch
- Throughput
- Utilization
- Flops/s
- Peak memory used
- Parallel speedup and efficiency

Flops/s

- Flops/s floating point operations per second
- Theoretical vs achieved
- Function of the algorithm, data, and hard
- Example: saxpy a*x+y

flops = 2N

		×		<i>Y</i>	Z
dware					
		A.			
	а		+		

Flops/s

- Flops/s floating point operations per second
- Theoretical vs achieved
- Function of the algorithm, data, and hardware
- Example: matrix multiplication

flops = 2MPN

- Is code being bottlenecked by data loading or compute?
- Important for algorithm design, optimizations, and hardware selection
- Arithmetic intensity
 - Ratio of arithmetic instructions to bytes loaded
 - Property of algorithm

$$flops = 2N$$

$$traffic = \left[(2 \text{ loads}) \left(8 \frac{\text{bytes}}{\text{load}} \right) + (1 \text{ store}) \left(8 \frac{\text{bytes}}{\text{st}} \right) \\ = 24N$$

- Is code being bottlenecked by data loading or compute?
- Important for algorithm design, optimizations, and hardware selection
- Arithmetic intensity
 - Ratio of arithmetic instructions to bytes loaded
 - Property of algorithm

$$flops = 2N$$
$$traffic = 24N$$
$$AI = \frac{flops}{traffic} = \frac{1}{12}$$

- Is code being bottlenecked by data loading or compute?
- Important for algorithm design, optimizations, and hardware selection
- Arithmetic intensity
 - Ratio of arithmetic instructions to bytes loaded
 - Property of algorithm

$$flops = 2N^{3}$$

$$traffic = 4 \cdot 8 \cdot n^{2}$$

$$AI = \frac{n}{16}$$
The amound of per-
dependent

- Is code being bottlenecked by data loading or compute?
- Important for algorithm design, optimizations, and hardware selection
- Arithmetic intensity
 - Ratio of arithmetic instructions to bytes loaded
 - Property of algorithm
- Attainable performance
 - Hardware has peak performance π flops/s
 - Hardware has peak memory bandwidth β bytes/s

AttainablePerformance(AI) = min { $\pi, \beta \cdot AI$ }

- Is code being bottlenecked by data loading or compute?
- Important for algorithm design, optimizations, and hardware selection
- Arithmetic intensity
 - Ratio of arithmetic instructions to bytes loaded
 - Property of algorithm
- Attainable performance
- Roofline model

Usually applied to individual kernels, but can be applied to groups of operations as well

An Example Roofline Model

• AI00

- 312 teraflops fp16 performance
- 1555 GB/s bandwidth
- Matrix Multiplication

Past N=3328 we are now compute bound

Abhinav Bhatele, Daniel Nichols (CMSC828G)

AttainablePerformance $(AI) = \min\left\{312, \frac{n}{16} \cdot 1.5\right\}$

• We recompute KV values when we run models in an autoregressive manner

• We recompute KV values when we run models in an autoregressive manner

Arithmetic intensity of KV calculation for new token

 $flops = 2 \cdot C^2 \quad traffic = 2 \cdot C^2$

AI = 1

GPU Utilization

- How effectively are you using your reso
- Occupancy
 - Ratio of active warps to total per SM
- Utilization
 - Percentage of samples where kernel is running
 - torch.cuda.utilization()

urces?	X	//		

Parallel Scaling and Efficiency

• Speedup

E

Abhinav Bhatele, Daniel Nichols (CMSC828G)

n

Performance Space

Performance depends on more than just processor count

Weak Scaling

Profiling

- PyTorch provides a profiler internally for measuring performance
- Simple python context
- <u>https://pytorch.org/docs/main/profiler.html</u>

with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("model_inference"): model(inputs)

Profiling

- PyTorch provides a profiler internally for measuring performance
- Simple python context
- <u>https://pytorch.org/docs/main/profiler.html</u>

with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True,)as prof: with record_function("model_inference"): model(inputs)

Abhinav Bhatele, Daniel Nichols (CMSC828G)

on_trace_ready=torch.profiler.tensorboard_trace_handler(dir_name)

Output for inspection in tensorboard

UNIVERSITY OF MARYLAND