GPGPU Programming

Abhinav Bhatele, Daniel Nichols

UNIVERSITY OF

MARYLAND

Core | Core Con
trol

L1 Cache | L1 Cache

Core Core

* Modern CPUs are designed to reduce latency 11 Cachie 11 Cache

* High clock rate cores

* Complex instruction sets

* Not great with throughput

N DEPARTMENT OF
»!f"* s COMPUTER SCIENCE

L2 Cache L2 Cache

L3 Cache

DRAM

CPU

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPU Throughput Example: Vector Addition

a b C CI

Core Con 2 core

L1 Cache | | L1 Cache

C

L3 Cache

DRAM

CPU

é:a} %Egﬁf)%ﬁﬁifg CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPU Throughput Example: Vector Addition

Core

L1 Cache

* Modern CPUs are designed to reduce latency
* High clock rate cores

* Complex instruction sets

* Not great with throughput

® CPUs can process data in parallel by a factor of cores and L3 Cache
maybe vector instruction width

DRAM

CPU

:&;.} %%ﬁfa%?ﬁrfg CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Core \. ‘ Core

L1 Cache | L1 Cache

* CPU

* few, fast cores

* more hardware dedicated to control and

Caching L2 Cache L2 Cache

—
3
—
|
—
[0
(]
]
§ }
—
—]

° G PU L3 Cache o
® many, ‘slow’” cores
®* more hardware dedicated to compute DRAM

CPU GPU

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

o

- DEPARTMENT OF Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

O0O00

S W N

GPU

o

* DEPARTMENT OF : N
) COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPUs vs GPUs: Some Numbers

* AMD Epyc 7742

® 64 cores / |28 threads
* 3.4 GHz boosted

* NVIDIAAIOO
®* 6912 FP32 cores
®* 3456 FP64 cores
* 6912 INT32/FP32 cores
* |.4 GHz boosted

xQg:,YLSI Ty

5

“* DEPARTMENT OF

L) COMPUTER SCIENCE

IRYLAS

SAXPY Performance on CPU vs A100
2XAMD EPYC 7742(128 cores, 256 threads) and A100 SXM4 40GB
25

20

15

10

0 ————
r-"- el rsi il

0 & A
stdpar C++ CPU CUDA C++ CuBLAS OpenACC stdparC++ GPU Thrust

Image from https://developer.nvidia.com/blog/n-ways-to-saxpy-demonstrating-the-breadth-of-gpu-programming-options/

Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://developer.nvidia.com/blog/n-ways-to-saxpy-demonstrating-the-breadth-of-gpu-programming-options/

NVIDIA Hardware Terminology

e CUDA Core

* Single sequential execution unit

* Streaming Multiprocessor (SM)
®* Collection of CUDA cores

® Shared LI cache
* Multiple “warp” schedulers per SM

* CUDA Capable Device / GPU

* A collection of SMs + an L2 cache +
DRAM

GPU

;Q %Eéﬁlg%?ﬁfRosF CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)
é

ARy LN

Example A100 SM

Warp Scheduler (32 thread/clk)

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

L1 Instruction Cache

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FPo4

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FPe4

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

CUDA Software Abstractions

* CUDA
* Language used to program NVIDIA GPUs

* Software ecosystem of libraries, runtimes, compilers, drivers

* Thread - A < ,
* Sequential execution unit
* Block _ J _ 1)

* A collection of concurrent threads

* <= 1024 threads // ———————————— o ommmmmmmese-- D

* Block Cluster
* HI00 and later only

______;____
—)
M
a \
VA
— AN
_J\/\/>

B T e

* Groups of blocks within the grid <)< <)<
G S TRATRL i
* A collection of blocks K\‘\————/———k————’// \‘\----/---K-———/Q

; N /Q %ES?\I/}{)I\[AJEFETROg CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Software to Hardware Mapping

CUDA thread CUDA core
CUDA streaming
CUDA thread block Multiprocessor(SM)

= [N

CUDA-capable GPU
CUDA kernel grid
\\\\\\ Y (;*W“:W SO
%‘?«% CEFEEReens e P35 a

Image: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

{SIERSITP

; Q %Egﬁf)%ﬁlﬂ\gROSF CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

TRyLAS

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Anatomy of a CUDA Kernel

global__]void saxpy (float *x, float *y, float alpha) {

int 1 = threadldx.x:;

v[1] = alpha*x[1] + v[1];

__global denotes a kernel.

int main () { Called from CPU and run on GPU.

saxpy<<<l, N>>>(x, v, alpha):;

; N Q %Egﬁf)%?gRogCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Anatomy of a CUDA Kernel

global woid saxpy(float *x, float *y, float alpha) {

int 1 =[thread1dx.xﬂ

v[1] = alpha*x[1] + v[1];

Execution Configuration Syntax:
<<< # of blocks, threads per block >>>

int main () {
threadldx is the thread index 0...N

saxpy{<<<1, N>>>](x, v, alpha);

; Q %Egﬁﬁ%%\ﬁ% CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Kernels Running on the Device Example

Compute saxpy with N = 4

saxpy<<<l, 4>>>(x, vy, alpha);

Block 0

int 1 = threadldx.x; int 1 = threadldx.x;

vi1i] = alpha*x[1] + vy[1]; vii] = alpha*x[1] + y[1];

int 1 = threadldx.x; int 1 = threadIldx.x;

vi1i] = alpha*x[1] + vy[1]; vii] = alpha*x[1] + vy[1];

RSI
\qB vy
o

"> DEPARTMENT OF : : :
J %Lb@% COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Kernels Running on the Device Example

Compute saxpy with N = 4

saxpy<<<l, 4>>>(x, vy, alpha);

Block 0

SAE DEPARTMENT OF : AN
J %Lb@% COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Possible Issues?

global woid saxpy(float *x, float *y, float alpha) {

int 1 = threadldx.x:;

v[1] = alpha*x[1] + v[1];

int main () |

saxpy<<<l, N>>>(x, v, alpha):;

S DEPARTMENT OF , : ,
18%595 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Multiple Blocks

~ _global wvoid saxpy(float *x, float *y, float alpha, size t N) {
int 1 = blockDim.x * blockIdx.x + threadIldx.x;
1f (1 < N)

yli] = alpha*x[1] + y[1];

Make sure we have enough
threads for each element

int main () {

saxpy<<<IN/block sizel, block size>>jq(x, vy, alpha);

J

S DEPARTMENT OF , : ,
18%595 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Grid and Block Dimensions

THREAD

-
—-—
—
-—
—
—
-—
—
—
—
—
—-—
_—
—
—-—

gridDim.z
blockDim.z

18

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Striding

~ global wvoid saxpy (float *x, float *y, float alpha, int N) {
int 10 = blockDim.x * blockIdx.x + threadldx.x;

int stride = blockDim.x * gridDim.x;

for (int 1 = 10; 1 < N; 1 += stride)

yv[1] = alpha*x[1] V-

stride

SAEGS>* DEPARTMENT OF : 1N
Y. COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Questions?

qeRSI T
5 =~

18

k2

“ DEPARTMENT OF)))
W) COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RYLBé

Matrix Multiply

* Standard matrix multiply

* How can we parallelize on a GPU!?

for (i1i=0; i<M; 1i++)

for (3=0; J<N; J++)

for (k=0; k<P; k++)
Cl1][3] += A[x1] [k]*

; Q %E(%?\I/}{)I\LAJEFEROSF CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Matrix Multiply

* All C, can be computed independently |
* 2-D thread decomposition :
* Thread (i, j) can compute C._ £
J =
* Dot product of A row i and B column j !
03| = = A
row = @.? """""""""" 2 =
A.width B.width
:l‘ $l< V>
A.height-1

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

RSI
QERSIT
)

=% DEPARTMENT OF : - -
18%595 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Issues?

= B.width-1

0
LL 1l

A.height-1

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

e\qgksrpy

47 Ié%ﬁ;%?ETROgCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

TRyLAS

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Issues?

* Poor data re-use

* Every value of A and B is loaded from global memory
®* Ais read N times

®* Bis read M times

* How can we improve data re-use?

; Q %%ﬁfa%?ﬂfg CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

—
-
-
.|
-
i
i
|
=
—

L2 Cache

DRAM

GPU

Shared Memory

* | ocal
® thread only

e Shared

®* threads in a block

e Distributed Shared

®* blocks in a cluster

* HI00 and later
 Global

* 3|l threads

é:a} %Egﬁf)%ﬁﬁifg CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

L2 Cache

DRAM

GPU

Shared Memory

* shared

® denotes static memory shared between threads in a block

* __syncthreads()

® synchronizes threads in a block

SMG:* DEPARTMENT OF : : :
(i 056 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

L2 Cache

DRAM

GPU

Example: Reversing in a Block

block 0 block |

vector in DRAM

copy to per block

shared memory |

~syncthreads()

copy back to DRAM
in reversed order

xxxxxxxx
OOOOOOOOOOOOOO

44444

Example: Sum

vector in smem

Al 2]6]a]s[s]o] 11 [a]3]10]
1V A 710, W M = ?/
__syncthreads() [w0] -] \3\ \24\/\2\ \114\/
<‘i‘> -~ ¢

svncthread 2 15 | A 6]

__syncthreads() |2 [| | EN AL)]
2 2

_syncthreads() |72 | [| [| [fsoof [| [| [|

_syncthreads() [z | | [[[| | | [| | [[[|

e * DEPARTMENT OF , , ,
 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

Example: Sum

vector in smem

Al 2]6]a]s[s]o] 11 [a]3]10]
1V A 710, W M i @/
__syncthreads() [w0] -] \3] zj_’/tj | \11)_’//)
<i> oV —

syncthreads 2 15] 4 6 | | |
__sy () \§>l | | \<?J L AL)]
__syncthreads() || | | [[[[froof [[[[[|

_syncthreads() [z | | [[[| | | [| | [[[|

e * DEPARTMENT OF , , ,
 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

Example: Sum

vector in smem

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

S DEPARTMENT OF , : ,
58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

ﬂﬂﬂﬂﬂ

Matrix Multiply with Shared Memory

B i
o . o — T '_
* How can we speed up matrix multiply with ~ °7[a : : I
shared memory!?
oW = @? e b ke Bl S T <
A.width B.width
8 | v
A.height-1
1:@@”"\’*% DEPARTMENT OF Abhinav Bhatele, Daniel Nichols (CMSC828G)

%) COMPUTER SCIENCE

RyLd

Matrix Multiply with Shared Memory

* Block computation

‘ Aw "
* Each block computes a submatrix of C ']
* Load re-used values of A and B into shared | | fw 2
.
memory 7 |
| e A
5 : L
o i g
L 1]
_________ LE o Auw
Cat N
5 %
:—1;::::::3'0\”:;::::::'!' § ':'::
BLOCK_SIZE-1= ve
< >4 > <+ >
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width
id > <

RSI
QERSIT
)

=% DEPARTMENT OF : - -
18%595 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory

* Compute C=AB
B

M <

.

> DEPARTMENT OF . . .
L) COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RyLD>

Matrix Multiply with Shared Memory

* Compute C=AB

* Block (i,j) compute submatrix Cij 5 D

* Save A & B submatrices into shared memory

SUr
S * DEPARTMENT OF

58" COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

44444

Matrix Multiply with Shared Memory

* Compute C=AB

* Block (i,j) compute submatrix Cij 5
* Save A & B submatrices into shared memory
* Accumulate partial dot product into C
A C

; Q %Egﬁﬁ%%\ﬁ{og CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Matrix Multiply with Shared Memory

* Compute C=AB

* Block (i,j) compute submatrix Cij 5
* Save A & B submatrices into shared memory D
* Accumulate partial dot product into C
A C

o

; Q %Egﬁﬁ%%\ﬁ% CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Matrix Multiply with Shared Memory

* Compute C=AB

* Block (i,j) compute submatrix Cij 5
* Save A & B submatrices into shared memory
* Accumulate partial dot product into C
A C

; Q %Egﬁﬁ%%\ﬁ% CIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

444444

Matrix Multiply with Shared Memory

* Compute C=AB

* Block (i,j) compute submatrix Cij

* Save A & B submatrices into shared memory

* Accumulate partial dot product into C r N

* Ais read N / block size times

* Bis read M/ block size times

* Data reads from global memory are i

reduced by an order of the block size

S DEPARTMENT OF , : ,
2\') COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RyLd

Algorithm
Simple CPU
Simple GPU

Shared
Memory

CuBLAS

SUr
S OZ DEPARTMENT OF

44444

Matrix Multiply with Shared Memory

‘B
Time (s) P < -
170.898 P
A \
4 \
1.997 T A C
0.091
0.017 M < i
B - - -
A, B are 2048x2048 :

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Questions?

qeRSI T
5 =~

18

k2

“ DEPARTMENT OF)))
W) COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

RYLBé

Streams

* CUDA kernels execute in streams
* Kernels in the same stream execute sequentially

* Kernels in separate streams can execute concurrently

cudaStream t stream;

kernel<<<grid, block, 0, stream>>>(x, b);

More info https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyVVebinar.pdf

qeRSIT
e&
Q

=% DEPARTMENT OF : - -
1:74;;»5 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Streams

Serial Model

H2D Engine

Kernel Engine

D2H Engine
>
Time
Concurrent Model

H2D Engine
Kernel Engine
D2H Engine

>

Time

Image from https://leimao.github.io/blog/ CUDA-Stream/
). DEPARTMENT OF Abhinav Bhatele, Daniel Nichols (CMSC828G)

W) COMPUTER SCIENCE

TRyLAS

https://leimao.github.io/blog/CUDA-Stream/

GPU Performance Optimization

* Profiling

® Nsight Systems: https://developer.nvidia.com/nsight-systems

* Common performance issues

®* Host < Device memory copying
* Memory, memory, memory

* Register pressure

®* Warp divergence

* Occupancy

S DEPARTMENT OF , : ,
18%;;(95 COMPUTER SCIENCE Abhinav Bhatele, Daniel Nichols (CMSC828G)

https://developer.nvidia.com/nsight-systems

T

U

)
UNIVERSITY OF

MARYLAND

