
GPGPU Programming
Abhinav Bhatele, Daniel Nichols

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPUs

• Modern CPUs are designed to reduce latency
• High clock rate cores
• Complex instruction sets

• Not great with throughput

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPU Throughput Example: Vector Addition

+ =

a b c C1 C2

C4C3

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPU Throughput Example: Vector Addition

• Modern CPUs are designed to reduce latency
• High clock rate cores
• Complex instruction sets

• Not great with throughput
• CPUs can process data in parallel by a factor of cores and

maybe vector instruction width

Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPUs

• CPU
• few, fast cores
• more hardware dedicated to control and

caching
• GPU

• many, “slow” cores
• more hardware dedicated to compute

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPUs

C1 C2 C3 C4 C5
…

… …

+ =

a b c
C1
C2
C3
C4…

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CPUs vs GPUs: Some Numbers

• AMD Epyc 7742
• 64 cores / 128 threads
• 3.4 GHz boosted

• NVIDIA A100
• 6912 FP32 cores
• 3456 FP64 cores
• 6912 INT32/FP32 cores
• 1.4 GHz boosted

Image from https://developer.nvidia.com/blog/n-ways-to-saxpy-demonstrating-the-breadth-of-gpu-programming-options/

https://developer.nvidia.com/blog/n-ways-to-saxpy-demonstrating-the-breadth-of-gpu-programming-options/

Abhinav Bhatele, Daniel Nichols (CMSC828G)

NVIDIA Hardware Terminology
• CUDA Core

• Single sequential execution unit
• Streaming Multiprocessor (SM)

• Collection of CUDA cores
• Shared L1 cache
• Multiple “warp” schedulers per SM

• CUDA Capable Device / GPU
• A collection of SMs + an L2 cache +

DRAM

Example A100 SM

Abhinav Bhatele, Daniel Nichols (CMSC828G)

CUDA Software Abstractions
• CUDA

• Language used to program NVIDIA GPUs
• Software ecosystem of libraries, runtimes, compilers, drivers

• Thread
• Sequential execution unit

• Block
• A collection of concurrent threads
• <= 1024 threads

• Block Cluster
• H100 and later only
• Groups of blocks within the grid

• Grid
• A collection of blocks

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Software to Hardware Mapping

Image: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a CUDA Kernel
__global__ void saxpy(float *x, float *y, float alpha) {

 int i = threadIdx.x;

 y[i] = alpha*x[i] + y[i];

}

int main() {

 ...

 saxpy<<<1, N>>>(x, y, alpha);

 ...

}

__global__ denotes a kernel.
Called from CPU and run on GPU.

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Anatomy of a CUDA Kernel
__global__ void saxpy(float *x, float *y, float alpha) {

 int i = threadIdx.x;

 y[i] = alpha*x[i] + y[i];

}

int main() {

 ...

 saxpy<<<1, N>>>(x, y, alpha);

 ...

}

Execution Configuration Syntax:
<<< # of blocks, threads per block >>>

threadIdx is the thread index 0...N

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Kernels Running on the Device Example

Compute saxpy with N = 4

saxpy<<<1, 4>>>(x, y, alpha); Call the kernel with 1 block
and 4 threads per block.

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

int i = threadIdx.x;

y[i] = alpha*x[i] + y[i];

Thread 0

Thread 2

Thread 1

Thread 3

Block 0

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Kernels Running on the Device Example

Compute saxpy with N = 4

saxpy<<<1, 4>>>(x, y, alpha); Call the kernel with 1 block
and 4 threads per block.

int i = 2;

y[i] = alpha*x[i] + y[i];

int i = 0;

y[i] = alpha*x[i] + y[i];

int i = 3;

y[i] = alpha*x[i] + y[i];

int i = 1;

y[i] = alpha*x[i] + y[i];

Thread 0

Thread 2

Thread 1

Thread 3

Block 0

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Possible Issues?
__global__ void saxpy(float *x, float *y, float alpha) {

 int i = threadIdx.x;

 y[i] = alpha*x[i] + y[i];

}

int main() {

 ...

 saxpy<<<1, N>>>(x, y, alpha);

 ...

}

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Multiple Blocks
__global__ void saxpy(float *x, float *y, float alpha, size_t N) {

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 if (i < N)

 y[i] = alpha*x[i] + y[i];

}

int main() {

 ...

 saxpy<<<⌈N/block_size⌉, block_size>>>(x, y, alpha);
 ...

}

Make sure we have enough
threads for each element

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Grid and Block Dimensions

GRID BLOCK

grid
Dim.x

THREAD
gridDim.y

gr
id

D
im

.z

blockDim.y

bl
oc

kD
im

.z

blockD
im.x

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Striding
__global__ void saxpy(float *x, float *y, float alpha, int N) {

 int i0 = blockDim.x * blockIdx.x + threadIdx.x;

 int stride = blockDim.x * gridDim.x;

 for (int i = i0; i < N; i += stride)

 y[i] = alpha*x[i] + y[i];

}

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c0 c1 c2 c3 c4 c5 c6 c7 c8

stride

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Questions?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply
• Standard matrix multiply

• How can we parallelize on a GPU?

for (i=0; i<M; i++)
 for (j=0; j<N; j++)
 for (k=0; k<P; k++)
 C[i][j] += A[i][k]*B[k][j];

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply
• All Cij can be computed independently

• 2-D thread decomposition

• Thread (i, j) can compute Cij

• Dot product of A row i and B column j

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Issues?

Image: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#from-graphics-processing-to-general-purpose-parallel-computing

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Issues?
• Poor data re-use

• Every value of A and B is loaded from global memory

• A is read N times

• B is read M times

• How can we improve data re-use?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Shared Memory
• Local

• thread only

• Shared
• threads in a block

• Distributed Shared
• blocks in a cluster

• H100 and later

• Global
• all threads

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Shared Memory
• __shared__

• denotes static memory shared between threads in a block

• __syncthreads()
• synchronizes threads in a block

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Example: Reversing in a Block
block 0 block 1

vector in DRAM

copy to per block
shared memory

__syncthreads()

copy back to DRAM
in reversed order

1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 100

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Example: Sum

-1 11 -2 -6 4 8 3 0 1 1 -1 3 10 1 -9 4

vector in smem

10 -8 12 3 2 2 11 -5

2 15 4 6

17 10

27

0 2 4 6 8 10 12 14

0 4 8 12

0 8

0

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Example: Sum

-1 11 -2 -6 4 8 3 0 1 1 -1 3 10 1 -9 4

vector in smem

10 -8 12 3 2 2 11 -5

2 15 4 6

17 10

27

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Example: Sum

-1 11 -2 -6 4 8 3 0 1 1 -1 3 10 1 -9 4

vector in smem

0 12 -3 -3 14 9 -6 4

14 21 -9 1

5 22

27

0 1 2 3 4 5 6 7

0 1 2 3

0 1

0

__syncthreads()

__syncthreads()

__syncthreads()

__syncthreads()

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory

• How can we speed up matrix multiply with
shared memory?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Block computation

• Each block computes a submatrix of C

• Load re-used values of A and B into shared

memory

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

A C

B

M

P
P

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

• Block (i,j) compute submatrix Cij

• Save A & B submatrices into shared memory

A C

B

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

• Block (i,j) compute submatrix Cij

• Save A & B submatrices into shared memory

• Accumulate partial dot product into C
A C

B

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

• Block (i,j) compute submatrix Cij

• Save A & B submatrices into shared memory

• Accumulate partial dot product into C
A C

B

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

• Block (i,j) compute submatrix Cij

• Save A & B submatrices into shared memory

• Accumulate partial dot product into C
A C

B

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory
• Compute C=AB

• Block (i,j) compute submatrix Cij

• Save A & B submatrices into shared memory

• Accumulate partial dot product into C

• A is read N / block_size times

• B is read M / block_size times

• Data reads from global memory are

reduced by an order of the block size

A C

B

M

P
P

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Matrix Multiply with Shared Memory

A C

B

M

P
PAlgorithm Time (s)

Simple CPU 170.898

Simple GPU 1.997

Shared
Memory

0.091

CuBLAS 0.017

A, B are 2048x2048

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Questions?

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Streams
• CUDA kernels execute in streams

• Kernels in the same stream execute sequentially

• Kernels in separate streams can execute concurrently

cudaStream_t stream;

...

kernel<<<grid, block, 0, stream>>>(x, b);

More info https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Streams

Image from https://leimao.github.io/blog/CUDA-Stream/

https://leimao.github.io/blog/CUDA-Stream/

Abhinav Bhatele, Daniel Nichols (CMSC828G)

GPU Performance Optimization
• Profiling

• Nsight Systems: https://developer.nvidia.com/nsight-systems

• Common performance issues
• Host ↔ Device memory copying

• Memory, memory, memory

• Register pressure

• Warp divergence

• Occupancy

https://developer.nvidia.com/nsight-systems

