Systems for Machine Learning (CMSC828G)

Abhinav Bhatele, Daniel Nichols

Getting started with zaratan

- Over 360 nodes with AMD Milan processors (128 cores/node, 512 GB memory/ node)
- 20 nodes with four NVIDIA AI00 GPUs (40 GB per GPU)
- 8 nodes with four NVIDIA H100 GPUs (80 GB per GPU)

ssh username@login.zaratan.umd.edu

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Data center / HPC cluster

- A set of nodes or processing elements connected by a network.
- Compute node: A shared-memory unit (optionally has GPUs)

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Cores, sockets, nodes

- Core: a single execution unit that has a private LI cache and can execute instructions independently
- Processor: several cores on a single Integrated Circuit (IC) or chip are called a multi-core processor
- Socket: physical connector into which an IC/chip or processor is inserted.
- Node: a packaging of sockets motherboard or printed circuit board (PCB) that has multiple sockets

https://hpc-wiki.info/hpc/HPC-Dictionary

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Shared memory architecture

Uniform Memory Access

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Shared memory architecture

Uniform Memory Access

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Non-uniform Memory Access (NUMA)

Hopper H100 SM

- CUDA Core
 - Single serial execution unit
- Each H100 Streaming Multiprocessor (SM) has:
 - 128 FP32 cores
 - 64 INT32 cores
 - 64 FP64 cores
 - 84 Tensor cores
- CUDA capable device or GPU
 - Collection of SMs

Abhinav Bhatele (CMSC416 / CMSC616)

Hopper H100 SM

- CUDA Core
 - Single serial execution unit
- Each H100 Streaming Multiprocessor (SM) has:
 - 128 FP32 cores
 - 64 INT32 cores
 - 64 FP64 cores
 - 84 Tensor cores
- CUDA capable device or GPU
 - Collection of SMs

Abhinav Bhatele (CMSC416 / CMSC616

SM

			L0 li	nstruc	tion C	ache		
Warp Scheduler (32 thread/clk)								
		Di	enatel	h Llnit	/32 fb	road/c		
			spate		(əz ui	reau/(лкј	
		Reg	ister	File ('	16,384	1 x 32	-bit)	
					, r			
INT32	FP3	32 FF	32	FP6	\$4			
INT32	FP3	32 FP	32	FP6	54			
INT32	FP3	32 FP	32	FP6	54			
INT32	FP3	32 FP	32	FP®	\$4			
INT32	FP3	32 FP	32	FP64				
INT32	FP3	32 FP	32	FP64				
INT32	FP3	32 FP	32	FP64				
INT32	FP3	32 FF	32	FP64		TE	NSO	R CORE
INT32	FP3	32 FP	32	FP64		4 ^{tn}	GEN	ERATION
INT32	FP3	32 FP	32	FP6	54			
INT32	FP3	32 FP	32	FP6	54			
INT32	FP3	32 FP	232	FP64				
INT32	FP3	32 FF	32	FP64				
INT32	FP3	32 FF	32	FP6	54			
INT32	FP3	32 FF	32	FP	54			
INT32	FP3	32 FP	32	FPE	54			
LD/	LD/	LD/	LD/	LD/	LD/	LD/	LD/	SEU
ST	ST	ST	ST	ST	ST	ST	ST	0.0

Dispatch Unit (32 thread/clk)									
		R	Reg	ist	er	File ('	16,384	4 x 32	-bit
INT32	FP3	32	FP	32	Г	FP6	i4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i 4		
INT32	FP3	32	FP	32	Г	FP6	; 4		
INT32	FP3	32	FP	32	Г	FP6	4		
INT32	FP3	32	FP	32		FP6	; 4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i4	TE	NS
INT32	FP3	32	FP	32		FP6	i4	4 th (GE
INT32	FP3	32	FP	32		FP6	i 4		
INT32	FP3	32	FP	32		FP6	i 4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i4		
INT32	FP3	32	FP	32		FP6	i 4		
LD/ ST	LD/ ST	LI S	D/ iT	LL S	D/ T	LD/ ST	LD/ ST	LD/ ST	LD ST

truction Cache

FP64

LD/ ST

L0 Instruction Cache

.0	Instruction	Cache				L0	h	
S	cheduler (32	thread/clk)	Warp Sch					
at	tch Unit (32 t	hread/clk)		Dispatcl				
te	er File (16,3	34 x 32-bit)	Register					
1	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64	TENSOR CORE	INT32	FP3	2 FP	32		
	FP64	4 th GENERATION	INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64		INT32	FP3	2 FP	32		
	FP64	INT32	FP3	2 FP	32			
.D ST	I LDI LDI ST ST	LD/ LD/ ST ST SFU	LD/ ST	LD/ ST	LD/ ST	LD/ ST		
51	SI SI	31 51		SI	SI	s		

L1 Instruction Cache

Tensor	Memory	v Acce	lerator
			erator

256 KB L1 Data Cache / Shared Memory

Tex

Rea

INT32 FP32 FP3

NT32 INT32

INT32

INT32

INT32

INT32

NT32

INT32

INT32

INT32

INT32

NT32 INT32

INT32

INT32

FP32 FP3

FP32 FP3

FP32 FP3

FP32 FP3

FP32 FP3

FP32 FP

FP32 FP3

FP32 FP

FP32 FP3

LD/ LD/ LD/ ST ST ST

Tex

Tex

NVIDIA H100 chip

H100 tensor cores

- Tensor cores are specialized cores for matrix multiply accumulate operations
- Operate in parallel across all SMs
- Multiply two 4 x 4 FPI6 matrices and add to a 4 x 4 FPI6 or FP32 matrix
- Mixed precision

https://resources.nvidia.com/en-us-tensor-core

Nodes with GPUs

- NIC: Network interface card that connects the node to the network
- PCle: high-speed interface often used to connect CPUs and GPUs
- NVLink: NVIDIA's high-speed interface often used between GPUs

Alternative node diagram

Alternative node diagram

³ DEPARTMENT OF COMPUTER SCIENCE

Distributed memory architecture

- Groups of processors/cores have access to their local memory
- Writes in one group's memory have no effect on another group's memory

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory architecture

- Groups of processors/cores have access to their local memory
- Writes in one group's memory have no effect on another group's memory

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory architecture

- Groups of processors/cores have access to their local memory
- Writes in one group's memory have no effect on another group's memory

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

A realistic cluster

Google's Tensor Processing Unit

- TPU is an ASIC (Application-specific Integrated Circuit)
- Co-processor just like GPUs
- Each TPU can have one or multiple MMUs
- TPU Pod is a collection of TPUs

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Network components

- Network interface controller or card
- Router or switch
- Network cables: copper or optical

Abhinav Bhatele (CMSC416 / CMSC616)

Source	
Source	
Source	
Source	
Source	

Message origin points : destination, frequency, size, etc. determined by application I micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

destination, frequency, size, etc. determined by application I micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Message origin points : destination, frequency, size, etc. determined by application I micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel file system or I/O sub-system

Parallel file system or I/O sub-system

Group Projects

- Self form into groups of 2-3
- Project will be ideally at the intersection of systems + ML
 - Using parallel systems to optimize an ML workload
- Timeline (all deadlines are midnight):
 - Group formation and project proposal: March 4
 - Interim report: April 17
 - Final presentation: May 6-13
 - Final report and code: May 15

UNIVERSITY OF MARYLAND