
Introduction to Systems / HPC
Abhinav Bhatele, Daniel Nichols

Systems for Machine Learning (CMSC828G)

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Getting started with zaratan

• Over 360 nodes with AMD Milan processors (128 cores/node, 512 GB memory/
node)

• 20 nodes with four NVIDIA A100 GPUs (40 GB per GPU)

• 8 nodes with four NVIDIA H100 GPUs (80 GB per GPU)

2

ssh username@login.zaratan.umd.edu

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Data center / HPC cluster

• A set of nodes or processing elements connected by a network.

• Compute node: A shared-memory unit (optionally has GPUs)

3

https://computing.llnl.gov/tutorials/parallel_comp

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Cores, sockets, nodes
• Core: a single execution unit that has

a private L1 cache and can execute
instructions independently

• Processor: several cores on a single
Integrated Circuit (IC) or chip are
called a multi-core processor

• Socket: physical connector into which
an IC/chip or processor is inserted.

• Node: a packaging of sockets —
motherboard or printed circuit board
(PCB) that has multiple sockets

4

https://hpc-wiki.info/hpc/HPC-Dictionary

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Shared memory architecture

• All processors/cores can access all memory as a single address space

5

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Shared memory architecture

• All processors/cores can access all memory as a single address space

5

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access Non-uniform Memory Access (NUMA)

Abhinav Bhatele (CMSC416 / CMSC616)

Hopper H100 SM
• CUDA Core

• Single serial execution unit

• Each H100 Streaming Multiprocessor (SM) has:

• 128 FP32 cores

• 64 INT32 cores

• 64 FP64 cores

• 84 Tensor cores

• CUDA capable device or GPU

• Collection of SMs

6

Abhinav Bhatele (CMSC416 / CMSC616)

Hopper H100 SM
• CUDA Core

• Single serial execution unit

• Each H100 Streaming Multiprocessor (SM) has:

• 128 FP32 cores

• 64 INT32 cores

• 64 FP64 cores

• 84 Tensor cores

• CUDA capable device or GPU

• Collection of SMs

6

Abhinav Bhatele, Daniel Nichols (CMSC828G)

NVIDIA H100 chip

7

Abhinav Bhatele, Daniel Nichols (CMSC828G)

H100 tensor cores

• Tensor cores are specialized cores for matrix multiply
accumulate operations

• Operate in parallel across all SMs

• Multiply two 4 x 4 FP16 matrices and add to a 4 x 4
FP16 or FP32 matrix

• Mixed precision

8

 NVIDIA H100 GPU Architecture In-Depth

23
NVIDIA H100 Tensor Core GPU Architecture

Figure 8. H100 FP16 Tensor Core has 3x throughput compared to A100 FP16
Tensor Core

Hopper FP8 Data Format

The H100 GPU adds FP8 Tensor Cores to accelerate both AI training and inference. As shown
in Figure 9, FP8 Tensor Cores support FP32 and FP16 accumulators, and two new FP8 input
types:

● E4M3 with 4 exponent bits, 3 mantissa bits, and 1 sign bit
● E5M2, with 5 exponent bits, 2 mantissa bits, and 1 sign bit.

E4M3 supports computations requiring less dynamic range with more precision, while E5M2
provides a wider dynamic range and less precision. FP8 halves data storage requirements and
doubles throughput compared to FP16 or BF16.

The new Transformer Engine (described in a section below) utilizes both FP8 and FP16
precisions to reduce memory usage and increase performance, while still maintaining accuracy
for large language and other models.

https://resources.nvidia.com/en-us-tensor-core

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Nodes with GPUs

• NIC: Network interface card that connects the
node to the network

• PCIe: high-speed interface often used to connect
CPUs and GPUs

• NVLink: NVIDIA’s high-speed interface often used
between GPUs

9

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Alternative node diagram

10

55 Open slide master to edit

Frontier Compute Node Diagram

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Alternative node diagram

10

55 Open slide master to edit

Frontier Compute Node Diagram

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

11

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

11

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory architecture

• Groups of processors/cores have access to their local memory

• Writes in one group’s memory have no effect on another group’s memory

11

Shared memory (NUMA)

Distributed memory

Abhinav Bhatele, Daniel Nichols (CMSC828G)

A realistic cluster

12

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Google’s Tensor Processing Unit

• TPU is an ASIC (Application-specific Integrated Circuit)

• Co-processor just like GPUs

13

Hence, the TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to a GPU.

Figure 1. ​TPU Block Diagram. The main computation part is the Figure 2. ​Floor Plan of TPU die. The shading follows Figure 1.
yellow Matrix Multiply unit in the upper right hand corner. Its inputs The light (blue) data buffers are 37% of the die, the light (yellow)
are the blue Weight FIFO and the blue Unified Buffer (UB) and its compute is 30%, the medium (green) I/O is 10%, and the dark
output is the blue Accumulators (Acc). The yellow Activation Unit (red) control is just 2%. Control is much larger (and much more
performs the nonlinear functions on the Acc, which go to the UB. difficult to design) in a CPU or GPU

The goal was to run whole inference models in the TPU to reduce interactions with the host CPU and to be flexible
enough to match the NN needs of 2015 and beyond, instead of just what was required for 2013 NNs. Figure 1 shows the block
diagram of the TPU.

The TPU instructions are sent from the host over the PCIe Gen3 x16 bus into an instruction buffer. The internal blocks
are typically connected together by 256-​byte​ -wide paths. Starting in the upper-right corner, the ​Matrix Multiply Unit ​ is the
heart of the TPU. It contains 256x256 MACs that can perform 8-bit multiply-and-adds on signed or unsigned integers. The
16-bit products are collected in the 4 MiB of 32-bit ​Accumulators​ below the matrix unit. The 4MiB represents 4096,
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per clock cycle. We picked 4096 by
first noting that the operations per byte need to reach peak performance (roofline knee in Section 4) is ~1350, so we rounded
that up to 2048 and then duplicated it so that the compiler could use double buffering while running at peak performance.

When using a mix of 8-bit weights and 16-bit activations (or vice versa), the Matrix Unit computes at half-speed, and it
computes at a quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle and can perform either a
matrix multiply or a convolution. The matrix unit holds one 64 KiB tile of weights plus one for double-buffering (to hide the
256 cycles it takes to shift a tile in). This unit is designed for dense matrices. Sparse architectural support was omitted for
time-to-deploy reasons. Sparsity will have high priority in future designs.

The weights for the matrix unit are staged through an on-chip ​Weight FIFO​ that reads from an off-chip 8 GiB DRAM
called ​Weight Memory​ (for inference, weights are read-only; 8 GiB supports many simultaneously active models). The weight
FIFO is four tiles deep. The intermediate results are held in the 24 MiB on-chip ​Unified Buffer​ , which can serve as inputs to
the Matrix Unit. A programmable DMA controller transfers data to or from CPU Host memory and the Unified Buffer.

Figure 2 shows the floor plan of the TPU die. The 24 MiB Unified Buffer is almost a third of the die and the Matrix
Multiply Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size was picked in part to match the
pitch of the Matrix Unit on the die and, given the short development schedule, in part to simplify the compiler (see Section 7).
Control is just 2%. Figure 3 shows the TPU on its printed circuit card, which inserts into existing servers like an SATA disk.

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow the CISC tradition, including a repeat
field. The average clock cycles per instruction (CPI) of these CISC instructions is typically 10 to 20. It has about a dozen
instructions overall, but these five are the key ones:

1. Read_Host_Memory​ reads data from the CPU host memory into the Unified Buffer (UB).
2. Read_Weights​ reads weights from Weight Memory into the Weight FIFO as input to the Matrix Unit.
3. MatrixMultiply/Convolve​ causes the Matrix Unit to perform a matrix multiply or a convolution from the

Unified Buffer into the Accumulators. A matrix operation takes a variable-sized B*256 input, multiplies it by a
256x256 constant weight input, and produces a B*256 output, taking B pipelined cycles to complete.

3

• Each TPU can have one or multiple
MMUs

• TPU Pod is a collection of TPUs

Abhinav Bhatele (CMSC416 / CMSC616)

Network components

• Network interface controller or card

• Router or switch

• Network cables: copper or optical

14

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

15

Source

Source

Source

Source

Source

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

15

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Packetization
and injection :
delay:100s of ns

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

15

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

15

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Links - congestion points
traversal time: 1-50 ns

Abhinav Bhatele (CMSC416 / CMSC616)

Life-cycle of a message

15

Source

Source

Source

Source

Source

NIC

Message origin points :
destination, frequency,
size, etc. determined
by application
1 micro sec - 10s of sec

Routers/
Switches

Routers/
Switches NIC Destination

Packetization
and injection :
delay:100s of ns

Path finding
delay ~100 ns
Temp storage in buffers

Links - congestion points
traversal time: 1-50 ns

Message destination points:
application dependent
1 micro sec - 10s of sec

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel file system or I/O sub-system

16

Leaf Switch

Each SU (1 management node, 1 login node,
2 LNET router nodes, 2 gateway nodes)

9

9

Leaf Switch

36 total

9 9

9 9

9 9

LNET router node

Object storage server (OSS)

Compute node

9 total

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel file system or I/O sub-system

16

Leaf Switch

Each SU (1 management node, 1 login node,
2 LNET router nodes, 2 gateway nodes)

9

9

Leaf Switch

36 total

9 9

9 9

9 9

LNET router node

Object storage server (OSS)

Compute node

9 total

Abhinav Bhatele, Daniel Nichols (CMSC828G)

Group Projects

• Self form into groups of 2-3

• Project will be ideally at the intersection of systems + ML

• Using parallel systems to optimize an ML workload

• Timeline (all deadlines are midnight):

• Group formation and project proposal: March 4

• Interim report: April 17

• Final presentation: May 6-13

• Final report and code: May 15

17

