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Instructors: Dr. Bhatele

• Ph.D. from the University of Illinois at Urbana-Champaign (midwest)

• Spent eight years at Lawrence Livermore National Laboratory (SF bay area)
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• Sixth year at the University of Maryland

• Research areas:

• High performance computing

• Distributed AI
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Instructors: (soon-to-be Dr.) Nichols

• Originally from Philadelphia, PA

• 5th and final year PhD student

• Research:

• The intersection of systems and ML

• Code LLMs
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Student introductions

• Name

• PhD/MS/undergraduate student

• Mention department if not in computer science

• Something interesting/unique about yourself

• (optional) Why this course?
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This course is
• Seminar course on recent advances in systems for machine learning (SysML)

• Qualifying course for MS/PhD: Computer Systems and Artificial Intelligence

• Work expected and grading:

• Two to three programming assignments: 30%

• Class participation:

• Submit questions/discussion topics on assigned paper readings: 10%

• Present an overview of one paper (in groups of two): 5%

• Midterm exam: in class on April 10: 30%

• Final (group) project: 25%
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Course topics
• Introduction to high performance computing (2 weeks)

• Introduction to deep learning (1 week)

• Challenges in high performance DL (1 week)

• Profiling DL workloads

• Distributed training (1.5 weeks)

• On-node performance optimizations (1 week)

• ML optimizations for systems (1.5 weeks)

• Inference (1 week)

• Data movement and I/O (2 weeks)
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Tools we will use for the class

• Syllabus, lecture slides, assignment/project descriptions on course website:

• https://www.cs.umd.edu/class/spring2025/cmsc828g

• All student submissions will be on gradescope:

• https://www.gradescope.com/courses/924314

• Discussions on Piazza:

• https://piazza.com/umd/spring2025/cmsc828g

• If you want to contact the course staff outside of piazza, send an email to: 
cmsc828g@cs.umd.edu
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Zaratan accounts

• Zaratan is the UMD DIT cluster we’ll use for the programming assignments

• You should receive an email when your account is ready for use

• Do NOT use the class allocation for research unrelated to the course

• Helpful resources:

• https://hpcc.umd.edu/hpcc/help/usage.html

• https://missing.csail.mit.edu

• https://www.cs.umd.edu/~mmarsh/books/cmdline/cmdline.html

• https://www.cs.umd.edu/~mmarsh/books/tools/tools.html
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Programming assignments

• You can write and debug most of your assignment locally

• If you have access to GPUs, you do not need to start on zaratan

• On zaratan:

• vim, emacs

• Do not use  VSCode to ssh into zaratan

• Eventually, you should ensure that your code runs correctly on zaratan
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Excused absence
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Any student who needs to be excused for an absence from a single lecture, due to a medically 
necessitated absence shall make a reasonable attempt to inform the instructor of his/her illness prior to 
the class. Upon returning to the class, present the instructor with a self-signed note attesting to the date 
of their illness. Each note must contain an acknowledgment by the student that the information provided 
is true and correct. Providing false information to University officials is prohibited under Part 9(i) of the 
Code of Student Conduct (V-1.00(B) University of Maryland Code of Student Conduct) and may result in 
disciplinary action.

Self-documentation may not be used for Major Scheduled Grading Events (midterm exam, project 
presentation) and it may only be used for one class meeting during the semester. Any student who needs 
to be excused for a prolonged absence (two or more consecutive class meetings), or for a Major 
Scheduled Grading Event, must provide written documentation of the illness from the Health Center or 
from an outside health care provider. This documentation must verify dates of treatment and indicate the 
timeframe that the student was unable to meet academic responsibilities. In addition, it must contain the 
name and phone number of the medical service provider to be used if verification is needed. No 
diagnostic information will ever be requested.
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Use of LLMs
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AI assistance (ChatGPT, Copilot, DALL-E, etc.) is not permitted for coding, writing, editing, or any other 
part of the class participation tasks and programming assignments. Even though we expect you will use 
these tools in the future, this approach will help you build a solid understanding of the subject matter, 
which will benefit your future career.

You can use AI tools such as ChatGPT as you would use Google for research. However, you cannot 
generate your solutions using ChatGPT. You must demonstrate independent thought and effort. If you use 
any AI tools for anything class related, you must mention that in your answer/report. Please note that 
LLMs provide unreliable information, regardless of how convincingly they do so. If you are going to use an 
LLM as a research tool in your submission, you must ensure that the information is correct and addresses 
the actual question asked.
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The evolution of HPC systems and rise of a 
new revolution in AI

• In the last two decades, an enormous 
amount of compute power has become 
available

• Large datasets and open source software 
such as PyTorch have also emerged

• Led to a frenzy in the world of AI and 
the effects are being felt in almost every 
other domain

12

Top500 Rpeak - 91.75 Tflop/s

FP64 - 34 Tflop/s

IBM Blue Gene/L, 2004

NVIDIA H100, 2024
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The evolution of HPC systems and rise of a 
new revolution in AI

• In the last two decades, an enormous 
amount of compute power has become 
available

• Large datasets and open source software 
such as PyTorch have also emerged

• Led to a frenzy in the world of AI and 
the effects are being felt in almost every 
other domain
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Top500 Rpeak - 91.75 Tflop/s

FP64 - 34 Tflop/s

IBM Blue Gene/L, 2004

NVIDIA H100, 2024
FP16 - 989 Tflop/s
10.63 Exaflop/s!!
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A timeline of evolution of LLMs
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Computer systems and ML 

• Architecture: GPUs, TPUs, …

• Memory management and optimization

• Networks: communication on data center networks, cloud servers, HPC systems

• Storage: File input/output

• Performance engineering and optimization: compute kernels
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Parallel computing and ML

• Large models do not fit on a single GPU

• Training: with a large amount of data, it can take too long on a single GPU

• Inference: large models and/or serving a large number of users can require multiple 
GPUs
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Do we really need parallel resources?
• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion 

parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!
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A Survey and Empirical Evaluation of Parallel Deep Learning
Frameworks

Daniel Nichols, Siddharth Singh, Shu-Huai Lin, Abhinav Bhatele

†Department of Computer Science, University of Maryland
College Park, USA

{dnicho,ssingh37,slin185}@umd.edu,bhatele@cs.umd.edu

ABSTRACT
The �eld of deep learning has witnessed a remarkable shift towards
extremely compute- and memory-intensive neural networks. These
newer larger models have enabled researchers to advance state-
of-the-art tools across a variety of �elds. This phenomenon has
spurred the development of algorithms for distributed training of
neural networks over a larger number of hardware accelerators. In
this paper, we discuss and compare current state-of-the-art frame-
works for large scale distributed deep learning. First, we survey
current practices in distributed learning and identify the di�er-
ent types of parallelism used. Then, we present empirical results
comparing their performance on large image and language train-
ing tasks. Additionally, we address their statistical e�ciency and
memory consumption behavior. Based on our results, we discuss
algorithmic and implementation portions of each framework which
hinder performance.

KEYWORDS
neural networks, deep learning, distributed training, GPUs, perfor-
mance, survey

1 INTRODUCTION
The previous decade witnessed an explosion in the development of
machine learning algorithms. In particular, deep learning (DL), a
subset of machine learning focused on using neural networks for
function approximation, has gained widespread popularity. Deep
neural networks (DNNs) have enabled the advancement of the
state of the art in a plethora of research areas: ranging from visual
recognition [28, 55, 61, 64, 72] and natural language processing [13,
40, 45, 66] to computational chemistry and computer systems [4,
19, 21, 34, 36, 62, 63, 67]. Their popularity stems from the DNN’s
ability to automatically learn low-dimensional representations from
high-dimensional unstructured data such as images, text and audio.
Given enough data, the representations learned by these models are
often superior to handcrafted features designed by domain experts.

The advances in accelerator technology, increased memory ca-
pacity per accelerator, and faster networks have encouraged users
of deep learning to train neural networks with increasingly larger
numbers of parameters. Figure 1 shows the increasing number of
parameters in the largest networks since 2012. Often times, it is
impossible to train such networks on a single accelerator either
due to large execution time or insu�cient memory capacity to �t
these models. The latter problem is further exacerbated for con-
temporary neural architectures. For example, GPT-2, an extremely
popular neural network used in NLP requires 84 GB of GPU DRAM
for training. This has motivated recent works in parallelizing the

task of deep learning: training large models using multiple GPUs
on a single node [18, 25] or across multiple nodes connected by a
network [14, 22, 31, 39, 46, 54, 70].
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Figure 1: Neural networks have continued to grow in size
in terms of the number of parameters. Recent language net-
works have further contributed to this trend.

Di�erent parallel frameworks o�er di�erent strengths and weak-
nesses in terms of performance (execution time for training), mem-
ory consumption, and statistical e�ciency. Ben-Nun et al. [3] sur-
veyed parallel DL frameworks and the di�erent ways of exploiting
the concurrency in neural networks in 2018. However, many new
frameworks have emerged in the last three years, and the authors
limited their discussion to a qualitative analysis. In this paper, we
survey the most popular parallel DL frameworks available today
and perform an empirical evaluation for the ones with open-source
implementations to compare various metrics. This comparative
evaluation can help users of deep learning select the best parallel
framework for their training tasks.

We �rst present a comprehensive qualitative survey of the state
of the art in parallel deep learning. We classify approaches for
parallelization into three categories (de�ned in Section 2): data
parallelism, intra-layer parallelism (sometimes referred to as model
parallelism), and inter-layer parallelism (sometimes referred to as
pipelining,). We present the advantages and disadvantages of using
each approach and discuss the capabilities of di�erent frameworks
that implement each type of parallelism.

An end user who needs a scalable DL framework for their train-
ing experiments needs to know which frameworks provide the
best statistical e�ciency in the shortest possible time. To the best
of our knowledge, an empirical comparison of parallel DL frame-
works has not been attempted before. We identify two popular

• OpenAI’s GPT 4.0 is estimated to have 
1.8 trillion parameters

• Meta’s Llama-3.1-405B has more than 
400 billion parameter
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Terms and definitions

• Model training: process of adjusting a model’s parameters using input data (and 
correct output) to accurately predict the output for unseen data

• Inference: using a trained model to make predictions for new inputs

• Fine-tuning: starting with a pre-trained model and adapt it to a specific task
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Large supercomputers

• Top500 list: https://top500.org/lists/top500/2024/06/
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Architecture of a parallel cluster

• A set of nodes or processing elements connected by a network. 
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https://computing.llnl.gov/tutorials/parallel_comp
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Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly
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Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links 
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.
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if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.
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I/O sub-system / Parallel file system

• Home directories and scratch space on 
clusters are typically on a parallel file 
system

• Compute nodes do not have local disks

• Parallel filesystem is mounted on all login 
and compute nodes
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Rackmount servers
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Rackmount servers
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Rackmount server motherboard
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Rackmount server motherboard
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GPGPUs

• Originally developed to handle computation related to graphics processing

• Also found to be useful for scientific computing and AI

• Hence the name: General Purpose Graphics Processing Unit
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GPGPU Hardware

• Higher instruction throughput

• Hide memory access latencies with computation
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NVIDIA H100 chip
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NVIDIA H100 chip
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NVIDIA H100 chip
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NVIDIA H100 chip
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Terms and definitions

• Model: an overloaded term 

• Network architecture: also an overloaded term

• Weights / parameters: floating point numbers that represent the model

• Used to denote the size of the model 
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Terms and definitions

• Language model: trained on natural language data for natural language tasks

• LLMs, Transformer models

• Image model: trained on image data for tasks dealing with images

• CNNs, ViTs, diffusion models

• Graph neural networks: trained on graph data
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Group project

29




