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Instructors: Dr. Bhatele

® Ph.D.from the University of lllinois at Urbana-Champaign (midwest)

® Spent eight years at Lawrence Livermore National Laboratory (SF bay area)

¢ SIXth yea‘r at the Un|ver5|t)’ Of Mar)’Iand M’:" i ob.—.w
® Research areas:

® High performance computing

e Distributed Al
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Instructors: (soon-to-be Dr.) Nichols

® Originally from Philadelphia, PA
® 5th and final year PhD student

e Research:

* The intersection of systems and ML

e Code LLMs
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Student introductions

e Name

® PhD/MS/undergraduate student

* Mention department if not in computer science

® Something interesting/unique about yourself

® (optional) Why this course?
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This course Is

® Seminar course on recent advances in systems for machine learning (SysML)

o Qualifying course for MS/PhD: Computer Systems and Artificial Intelligence

® Work expected and grading:

* Jwo to three programming assignments: 30%

e Class participation:

e Submit questions/discussion topics on assigned paper readings: 0%
* Present an overview of one paper (in groups of two): 5%

* Midterm exam:in class on April 10: 30%

e Final (group) project: 25%
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Course topics

® Introduction to high performance computing (2 weeks)
® Introduction to deep learning (I week)

® Challenges in high performance DL (| week)

* Profiling DL workloads

® Distributed training (1.5 weeks)

® On-node performance optimizations (| week)
® ML optimizations for systems (1.5 weeks)

® Inference (I week)

® Data movement and |/O (2 weeks)
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Tools we will use for the class

e Syllabus, lecture slides, assighment/project descriptions on course website:

e https://www.cs.umd.edu/class/spring2025/cmsc828¢

e All student submissions will be on gradescope:

e https://www.gradescope.com/courses/9243 14

® Discussions on Piazza:

* https://piazza.com/umd/spring2025/cmsc828¢

® |f you want to contact the course staff outside of piazza, send an email to:
cmsc828g(@cs.umd.edu
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https://www.cs.umd.edu/class/spring2025/cmsc828g
https://www.gradescope.com/courses/924314
https://piazza.com/umd/spring2025/cmsc828g
mailto:cmsc828g@cs.umd.edu

Zaratan accounts

e Zaratan is the UMD DIT cluster we'll use for the programming assignments
® You should receive an email when your account is ready for use
® Do NOT use the class allocation for research unrelated to the course

e Helpful resources:

o https://hpcc.umd.edu/hpcc/help/usage.html

* https://missing.csail.mit.edu

e https://www.cs.umd.edu/~mmarsh/books/cmdline/cmdline.html

o https://www.cs.umd.edu/~mmarsh/books/tools/tools.html
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Programming assignments

® You can write and debug most of your assignment locally

* If you have access to GPUs, you do not need to start on zaratan

e On zaratan:
® vim, emacs

e Do not use VYSCode to ssh into zaratan

e Eventually, you should ensure that your code runs correctly on zaratan
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Excused absence

Any student who needs to be excused for an absence from a single lecture, due to a medically
necessitated absence shall make a reasonable attempt to inform the instructor of his/her illness prior to
the class. Upon returning to the class, present the instructor with a self-signed note attesting to the date
of their illness. Each note must contain an acknowledgment by the student that the information provided
is true and correct. Providing false information to University officials is prohibited under Part 9(i) of the

Code of Student Conduct (V-1.00(B) University of Maryland Code of Student Conduct) and may result in
disciplinary action.

Self-documentation may not be used for Major Scheduled Grading Events (midterm exam, project
presentation) and it may only be used for one class meeting during the semester. Any student who needs
to be excused for a prolonged absence (two or more consecutive class meetings), or for a Major
Scheduled Grading Event, must provide written documentation of the illness from the Health Center or
from an outside health care provider. This documentation must verify dates of treatment and indicate the
timeframe that the student was unable to meet academic responsibilities. In addition, it must contain the

name and phone number of the medical service provider to be used if verification is needed. No
diagnostic information will ever be requested.
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Use of LLMs

Al assistance (ChatGPT, Copilot, DALL-E, etc.) is not permitted for coding, writing, editing, or any other
part of the class participation tasks and programming assignments. Even though we expect you will use
these tools in the future, this approach will help you build a solid understanding of the subject matter,
which will benefit your future career.

You can use Al tools such as ChatGPT as you would use Google for research. However, you cannot
generate your solutions using ChatGPT.You must demonstrate independent thought and effort. If you use
any Al tools for anything class related, you must mention that in your answer/report. Please note that
LLMs provide unreliable information, regardless of how convincingly they do so. If you are going to use an
LLM as a research tool in your submission, you must ensure that the information is correct and addresses
the actual question asked.
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The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous
amount of compute power has become

available Top500 Rpeak - 91.75 Tflop/s |
® |arge datasets and open source software DN
such as PyTorch have also emerged IBM Blue Gene/L, 2004

® |Led to a frenzy in the world of Al and
the effects are being felt in almost every
other domain

FP64 - 34 Tflop/s
\ \ \ NVIDIA HI100, 2024
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The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous

amount of compute power has become
available

® |arge datasets and open source software
such as PyTorch have also emerged

® |Led to a frenzy in the world of Al and
the effects are being felt in almost every
other domain

FP16 - 989 Tflop/s
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The evolution of HPC systems and rise of a
new revolution in Al

® |n the last two decades, an enormous

amount of compute power has become
available

® |arge datasets and open source software
such as PyTorch have also emerged

® |Led to a frenzy in the world of Al and
the effects are being felt in almost every
other domain

10.63 Exaflop/s!!

NVIDIA H100, 2024
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A timeline of evolution of LLMs
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https://www.mlé.eu/resources/large-language-models
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Computer systems and ML

e Architecture;: GPUs, TPUs, ...

® Memory management and optimization
e Networks: communication on data center networks, cloud servers, HPC systems
e Storage: File input/output

® Performance engineering and optimization: compute kernels

RYALS 152
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Parallel computing and ML

® |Large models do not fit on a single GPU
® Training: with a large amount of data, it can take too long on a single GPU

® |nference: large models and/or serving a large number of users can require multiple
GPUs

RYALS 152
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Do we really need parallel resources?

® The largest model you can run on an HI00 96 GB GPU is around 3.5-4 billion
parameters

® On a single node (with four HI00 GPUs): around ~16 billion parameters model

® Training a |6B parameter would take 33 years!

Increase in size of neural networks

1012 .................................................................................................................................
e OpenAl's GPT 4.0 is estimated to have ¢
o BT Y .. T-NLG
|.8 trillion parameters 2 -
glolO ...............................................................................................................................
® Meta’s Llama-3.1-405B has more than 5 of o A
400 billion parameter 3
c 108 .............................................. : .......Bert.-.large ...........................
E VGG-16
107 , 'A\le)l(Net I | | | | ]
2012 2014 2016 2018201920202021
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Terms and definitions

® Model training: process of adjusting a model’s parameters using input data (and
correct output) to accurately predict the output for unseen data

® |nference: using a trained model to make predictions for new inputs

® Fine-tuning: starting with a pre-trained model and adapt it to a specific task
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Large supercomputers
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Top500 list: https://top500.org/lists/top500/2024/06/

Rank

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon
CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure
Microsoft Azure

United States

Supercomputer Fugaku - Supercomputer Fugaku, Ab4FX 48C
2.2GHz, Tofu interconnect D, Fujitsu

RIKEN Center for Computational Science

Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC
64C 26Hz, AMD Instinct MI1250X, Slingshot-11, HPE
EuroHPC/CSC

Finland
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Ryih®

Cores

8,699,904

9,264,128

2,073,600

7,630,848

2,752,704

Rmax
(PFlop/s)

1,206.00

1,012.00

961.20

442.01

372.70

Rpeak
(PFlop/s)

1,714.81

1,980.01

846.84

537.21

931.51

Power
(kW)

22,786

38,598

29,899

7,107

https://www.olcf.ornl.gov/frontier
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Architecture of a parallel cluster

® A set of nodes or processing elements connected by a network.
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Interconnection networks

e Different topologies for connecting nodes together

® Used in the past: torus, hypercube

® More popular currently: fat-tree, dragonfly
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A group with 96 Aries routers
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/O sub-system / Parallel file system

Management Metadata Object Storage

® Home directories and scratch space on Target(MGT)  Target (MDT) Targets (05T

clusters are typically on a parallel file 1 | | |
system

e Compute nodes do not have local disks

® Parallel filesystem is mounted on all login
and compute nodes Management

Network

Object Storage
Servers

Metadata and
Management
Servers

High Performance Data Network
(Omni-Path, InfiniBand, 10/40/100GhE)

http://wiki.lustre.org/Introduction_to_Lustre
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Rackmount servers
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Rackmount servers
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Rackmount server motherboard
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Rackmount server motherboard

4th Generation Intel® Core™ Processor Die Map
22nm Tri-Gate 3-D Transistors
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GPGPUs

® Originally developed to handle computation related to graphics processing
e Also found to be useful for scientific computing and Al

® Hence the name: General Purpose Graphics Processing Unit
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GPGPU Hardware

® Higher instruction throughput

® Hide memory access latencies with computation

Core Core

L1 Cache L1 Cache
L2 Cache L2 Cache

L3 Cache

DRAM

CPU

,c;'t'.u'l'
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L2 Cache

GPU
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NVIDIA H100 chip
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Terms and definitions

® Model: an overloaded term
e Network architecture: also an overloaded term

® Weights / parameters: floating point numbers that represent the model

e Used to denote the size of the model
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Terms and definitions

® |Language model: trained on natural language data for natural language tasks

e LLMs, Transformer models

® |Image model: trained on image data for tasks dealing with images

e CNNs,ViTs, diffusion models

® Graph neural networks: trained on graph data
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