
Democratizing AI: Open-source Scalable

LLM Training on GPU-based Supercomputers

Siddharth Singh, Prajwal Singhania, Aditya Ranjan, John Kirchenbauer,
Jonas Geiping,Yuxin Wen, Neel Jain, Abhimanyu Hans, Manli Shu, Aditya Tomar,

Tom Goldstein, Abhinav Bhatele

ACM Gordon Bell Prize ‘24 Finalist

Singh & Bhatele @

ACM Gordon Bell Prize

• Awarded annually by ACM to recognize major achievements in HPC

• Focus on innovations in scalability and potential real-world impact

• Scalability – Use as many compute resources (GPUs/CPUs) as efficiently as possible [aka FLOPs-Maxxing]

• Scientific impact – Contributions to a scientific domain

• Six Finalists at Supercomputing 24 - two of which focused on large scale LLM
training.

Singh & Bhatele @

The evolution of HPC systems and rise of a new

revolution in AI

• In the last two decades, an enormous
amount of compute power has become
available

• Large datasets and open source software
such as PyTorch have also emerged

• Led to a frenzy in the world of AI and the
effects are being felt in almost every other
domain

3

Top500 Rpeak - 91.75 Tflop/s

FP64 - 34 Tflop/s

IBM Blue Gene/L, 2004

NVIDIA H100, 2024

FP16 - 989 Tflop/s
10.63 Exaflop/s!!

Singh & Bhatele @

A few things that are unique about this Gordon Bell

submission

• An all CS team only composed of students and academics

5

• Our “science” problem is not from a traditional computational science domain but
from computer science — AI / machine learning

• We report bfloat16 (half-precision) flop/s on tensor cores (of GPUs)

• 2024 is the first year when AI papers reporting fp16/bf16 flop/s are Gordon Bell
finalists

FP64 Exaflop/s FP16 Exaflop/s

El Capitan 2.746 43.67

Frontier 2.056 14.42

Alps 0.575 10.63

Singh & Bhatele @

Memorization in Large Language Models

• LLMs can be made to output training
data verbatim and this “memorization”
increases with model size, and
repetitions in training data

6

N. Carlini et al. Quantifying Memorization Across Neural Language Models.
ICLR 2023. https://arxiv.org/abs/2202.07646

Ex
ac

t
M

at
ch

 (
%

)

https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html

https://spectrum.ieee.org/midjourney-copyright

https://x.com/DocSparse/status/1581461734665367554

https://arxiv.org/abs/2202.07646

Singh & Bhatele @

Catastrophic memorization at scale

• Ability to memorize large documents
appears only in large models

• Catastrophic memorization: even a single
pass is sufficient

7

Singh & Bhatele @

Solution: “Goldfish loss” to prevent memorization

• We introduce a mask that omits some
tokens from the loss computation

• This makes it unlikely for long sequences to
be memorized and regurgitated

8

Singh & Bhatele @

Do we really need parallel resources?

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

• OpenAI’s GPT 4.0 is estimated to have 1.8 trillion parameters

• Meta’s Llama-3.1-405B has more than 400 billion parameters

9

Singh & Bhatele @

Sequential LLM training

10

while (remaining_batches) {

Read a single batch

Forward pass: perform matrix multiplies to compute

output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of

the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or

parameters such that loss is gradually reduced

}

Singh & Bhatele @

Why is LLM training well-suited for HPC?

11

DecoderEmbedding Decoder Decoder Classifier

Li
n

ea
r

Forward
Pass

Backward
Pass

La
ye

rs

Self
attention

ReLU

Attention block Multi-layer perceptronD
ec

o
d

er Linear Linear LinearLinear

Singh & Bhatele @

How to scale training to 1000s of GPUs?

• Step 1: Choose a performant parallel algorithm

• Step 2: Minimize communication overheads

• Step 2a: Strategy for communication-optimal work decomposition to GPUs (via heuristics or modelling)

• Step 2b: Overlapping Computation with Communication

• Step 3: Other optimizations

Singh & Bhatele @

Systems/HPC Innovations in AxoNN

• 3D parallelization of tensor computations

• A communication performance model to choose the best decomposition of GPUs

• Aggressive overlap of computation with communication

13

• Tuning how we call BLAS routines

• An easy-to-use API for parallelizing serial
deep learning models

IBM J. Res. Dev., 1995

1. Choose a performant

algorithm

2. Communication-optimal

work decomposition via

modelling or heuristics3. Overlap of computation

with communication

Singh & Bhatele @

A four-dimensional hybrid parallel approach

• A hybrid parallelism approach

• Combines data parallelism with
3-dimensional parallel matrix
multiplication (PMM)

14

Data Parallelism

Batch

Shard 2

Shard 1

Shard 0

GPU Group 2

GPU Group 1

GPU Group 0

1

Singh & Bhatele @

Enabling 3D parallel matrix multiplication in AxoNN

• Each layer is multiplying input activations with weights to produce output activations

• Distribute I and W across a 3D grid of GPUs

• Compute partial output activations, O on each GPU

15

1

Singh & Bhatele @

A Network-aware Communication Model for Work

Decomposition

• We have to decompose the GPU allocation (G GPUs) into a 4-dimensional virtual
grid, Gdata * Gx * Gy * Gz = G

• Problem: what is the optimal number of GPUs in each dimension (Gdata, Gx, Gy, Gz) w.r.t. performance

• Challenge: the search space of configurations grows with the number of GPUs

• For example, for 32K GPUs, there are >800 unique configurations

• Solution: A communication model to prune the search space

• Takes message sizes, collective algorithms, and bandwidths into account

• The model ranks the configurations in order of decreasing expected performance

16

2

Singh & Bhatele @

Inner workings of the communication model

• Predict total time spent in communication

17

2

𝑇comm = 𝑇all−gather
𝑧

+𝑇reduce−scatter
𝑧 +𝑇all−reduce

𝑥 +𝑇all−reduce
𝑦

+𝑇all−reduce
data

𝑇all−gather
𝑧 =

1

𝛽
× (𝐺𝑧 − 1) ×

𝑘 × 𝑛

𝐺𝑥 × 𝐺𝑦 × 𝐺𝑧

Find near-optimal values
of Gdata, Gx, Gy, Gz

Peer-to-peer
bandwidth

• Time of each collective operation depends upon the algorithm used

Singh & Bhatele @

Modeling bandwidth available to each collective

operation

18

2

GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Node 0 Node 1

• Expected bandwidths are calculated based on number of collectives using a link

Singh & Bhatele @

Validating the model

• We ran all possible 4D configurations for a
“small” model on 32 GPUs

• Compare model predictions with ground
truth

19

2

Singh & Bhatele @

Tuning BLAS kernels

• Calling rocblas_gemm_ex with transA=N,
transB=N is significantly faster than T, N for
some matrix multiplies

20

3

TN

NN

Singh & Bhatele @

Overlap non-blocking collectives with computation

• BW pass, tensor parallel phase: overlap all-
reduces with calculating gradients of weights

• FW pass and (necessary FW pass within) BW
pass, tensor parallel phase: overlap all-gathers
of previous layer with computation of next
layer

• BW pass, tensor parallel phase: perform
reduce-scatters of the gradients
asynchronously for the entire model

• Cache all-gathers that are needed again

21

4

Singh & Bhatele @

Easy parallelization using AxoNN

• Requires minimal code changes to model architecture (code):

• AxoNN intercepts all declarations of torch.nn.Linear, and parallelizes them

• Our ML collaborators used this mode for the memorization experiments

• We also have backends for lightning and accelerate

22

from axonn.intra_layer import auto_parallelize

with auto_parallelize():

net = # declare your sequential model here

5

Singh & Bhatele @

Experimental Setup

• Weak scaling

• You can either keep the model size fixed and keep increasing the batch size — embarrassingly parallel.

• Keep the batch sized fixed and increase the model size — a significantly more challenging problem!

• Strong scaling

23

Singh & Bhatele @

Friends don’t let friends use batch sizes larger than

16M

• Well-established in the ML community:
batch sizes cannot be increased
arbitrarily — leads to convergence
issues

24

https://x.com/ylecun/status/989610208497360896

Singh & Bhatele @

Weak scaling performance

25

1.38 Exaflop/s

1.41 Exaflop/s

Singh & Bhatele @

Summary

• Parallel fine-tuning using AxoNN has enabled large-scale memorization studies in
LLMs

• Several innovations in AxoNN have enabled us to scale the challenging tensor
parallelism mode with production (<=16M) batch sizes and very large models to >
16,000 GPUs

• Achieved flop/s of >1.4 BF16 Exaflop/s

• AxoNN: an open-source highly scalable framework for pre-training/fine-
tuning/inference

27

Singh & Bhatele @

Acknowledgments

• Richard Gerber, Rebecca Hartman-Baker, Kevin Gott and Peter Harrington

• Bronson Messer, Phil Roth, Jens Glaser and Michael Sandoval

• Maria-Grazia Giuffreda, Fabian Bosch, Theofilos Manitaras, Henrique Mendonica and
Fawzi Mohamed

• Jack Wells, Tom Gibbs, and Josh Romero

• Nicholas Malaya and Alessandro Fanfarillo

• Mark Stock and Mengshiou Wu

• DOE INCITE allocation, 2024

28

Siddharth Singh and Abhinav Bhatele

Parallel Software and Systems Group

University of Maryland, College Park

	Slide 1: Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
	Slide 2: ACM Gordon Bell Prize
	Slide 3: The evolution of HPC systems and rise of a new revolution in AI
	Slide 5: A few things that are unique about this Gordon Bell submission
	Slide 6: Memorization in Large Language Models
	Slide 7: Catastrophic memorization at scale
	Slide 8: Solution: “Goldfish loss” to prevent memorization
	Slide 9: Do we really need parallel resources?
	Slide 10: Sequential LLM training
	Slide 11: Why is LLM training well-suited for HPC?
	Slide 12: How to scale training to 1000s of GPUs?
	Slide 13: Systems/HPC Innovations in AxoNN
	Slide 14: A four-dimensional hybrid parallel approach
	Slide 15: Enabling 3D parallel matrix multiplication in AxoNN
	Slide 16: A Network-aware Communication Model for Work Decomposition
	Slide 17: Inner workings of the communication model
	Slide 18: Modeling bandwidth available to each collective operation
	Slide 19: Validating the model
	Slide 20: Tuning BLAS kernels
	Slide 21: Overlap non-blocking collectives with computation
	Slide 22: Easy parallelization using AxoNN
	Slide 23: Experimental Setup
	Slide 24: Friends don’t let friends use batch sizes larger than 16M
	Slide 25: Weak scaling performance
	Slide 27: Summary
	Slide 28: Acknowledgments
	Slide 29

