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ACM Gordon Bell Prize

• Awarded annually by ACM to recognize major achievements in HPC

• Focus on innovations in scalability and potential real-world impact

• Scalability – Use as many compute resources (GPUs/CPUs) as efficiently as possible [aka FLOPs-Maxxing]

• Scientific impact – Contributions to a scientific domain

• Six Finalists at Supercomputing 24 - two of which focused on large scale LLM 
training.
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The evolution of HPC systems and rise of a new 

revolution in AI

• In the last two decades, an enormous 
amount of compute power has become 
available

• Large datasets and open source software 
such as PyTorch have also emerged

• Led to a frenzy in the world of AI and the 
effects are being felt in almost every other 
domain
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Top500 Rpeak - 91.75 Tflop/s

FP64 - 34 Tflop/s

IBM Blue Gene/L, 2004

NVIDIA H100, 2024

FP16 - 989 Tflop/s
10.63 Exaflop/s!!
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A few things that are unique about this Gordon Bell 

submission

• An all CS team only composed of students and academics
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• Our “science” problem is not from a traditional computational science domain but 
from computer science — AI / machine learning

• We report bfloat16 (half-precision) flop/s on tensor cores (of GPUs)

• 2024 is the first year when AI papers reporting fp16/bf16 flop/s are Gordon Bell 
finalists

FP64 Exaflop/s FP16 Exaflop/s

El Capitan 2.746 43.67

Frontier 2.056 14.42

Alps 0.575 10.63
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Memorization in Large Language Models

• LLMs can be made to output training 
data verbatim and this “memorization” 
increases with model size, and 
repetitions in training data
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N. Carlini et al. Quantifying Memorization Across Neural Language Models. 
ICLR 2023. https://arxiv.org/abs/2202.07646

Ex
ac

t 
M

at
ch

 (
%

)

https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html

https://spectrum.ieee.org/midjourney-copyright

https://x.com/DocSparse/status/1581461734665367554

https://arxiv.org/abs/2202.07646
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Catastrophic memorization at scale

• Ability to memorize large documents 
appears only in large models

• Catastrophic memorization: even a single 
pass is sufficient
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Solution: “Goldfish loss” to prevent memorization

• We introduce a mask that omits some 
tokens from the loss computation

• This makes it unlikely for long sequences to 
be memorized and regurgitated
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Do we really need parallel resources?

• The largest model you can run on an H100 96 GB GPU is around 3.5-4 billion 
parameters

• On a single node (with four H100 GPUs): around ~16 billion parameters model

• Training a 16B parameter would take 33 years!

• OpenAI’s GPT 4.0 is estimated to have 1.8 trillion parameters

• Meta’s Llama-3.1-405B has more than 400 billion parameters
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Sequential LLM training
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while (remaining_batches) {

Read a single batch

Forward pass: perform matrix multiplies to compute

output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of

the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or

parameters such that loss is gradually reduced

}
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Why is LLM training well-suited for HPC?
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How to scale training to 1000s of GPUs?

• Step 1: Choose a performant parallel algorithm

• Step 2: Minimize communication overheads

• Step 2a: Strategy for communication-optimal work decomposition to GPUs (via heuristics or modelling) 

• Step 2b: Overlapping Computation with Communication

• Step 3: Other optimizations
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Systems/HPC Innovations in AxoNN

• 3D parallelization of tensor computations

• A communication performance model to choose the best decomposition of GPUs

• Aggressive overlap of computation with communication

13

• Tuning how we call BLAS routines

• An easy-to-use API for parallelizing serial 
deep learning models

IBM J. Res. Dev., 1995

1. Choose a performant 

algorithm

2. Communication-optimal 

work decomposition via 

modelling or heuristics3. Overlap of computation 

with communication
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A four-dimensional hybrid parallel approach

• A hybrid parallelism approach

• Combines data parallelism with 
3-dimensional parallel matrix 
multiplication (PMM)
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Data Parallelism

Batch

Shard 2

Shard 1

Shard 0

GPU Group 2

GPU Group 1

GPU Group 0
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Enabling 3D parallel matrix multiplication in AxoNN

• Each layer is multiplying input activations with weights to produce output activations

• Distribute I and W across a 3D grid of GPUs

• Compute partial output activations, O on each GPU

15
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A Network-aware Communication Model for Work 

Decomposition

• We have to decompose the GPU allocation (G GPUs) into a 4-dimensional virtual 
grid, Gdata * Gx * Gy * Gz = G

• Problem: what is the optimal number of GPUs in each dimension (Gdata, Gx, Gy, Gz) w.r.t. performance

• Challenge: the search space of configurations grows with the number of GPUs

• For example, for 32K GPUs, there are >800 unique configurations

• Solution:  A communication model to prune the search space

• Takes message sizes, collective algorithms, and bandwidths into account

• The model ranks the configurations in order of decreasing expected performance 
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Inner workings of the communication model

• Predict total time spent in communication
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𝑇comm = 𝑇all−gather
𝑧

+𝑇reduce−scatter
𝑧 +𝑇all−reduce

𝑥 +𝑇all−reduce
𝑦

+𝑇all−reduce
data

𝑇all−gather
𝑧 =

1

𝛽
× (𝐺𝑧 − 1) ×

𝑘 × 𝑛

𝐺𝑥 × 𝐺𝑦 × 𝐺𝑧

Find near-optimal values 
of Gdata, Gx, Gy, Gz

Peer-to-peer 
bandwidth

• Time of each collective operation depends upon the algorithm used
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Modeling bandwidth available to each collective 

operation
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GPU 0 GPU 1

GPU 2 GPU 3

GPU 0 GPU 1

GPU 2 GPU 3

Node 0 Node 1

• Expected bandwidths are calculated based on number of collectives using a link
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Validating the model

• We ran all possible 4D configurations for a 
“small” model on 32 GPUs

• Compare model predictions with ground 
truth 
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Tuning BLAS kernels

• Calling rocblas_gemm_ex with transA=N, 
transB=N is significantly faster than T, N for 
some matrix multiplies
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Overlap non-blocking collectives with computation

• BW pass, tensor parallel phase: overlap all-
reduces with calculating gradients of weights

• FW pass and (necessary FW pass within) BW 
pass, tensor parallel phase: overlap all-gathers
of previous layer with computation of next 
layer

• BW pass, tensor parallel phase: perform 
reduce-scatters of the gradients 
asynchronously for the entire model

• Cache all-gathers that are needed again

21
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Easy parallelization using AxoNN

• Requires minimal code changes to model architecture (code):

• AxoNN intercepts all declarations of torch.nn.Linear, and parallelizes them

• Our ML collaborators used this mode for the memorization experiments

• We also have backends for lightning and accelerate
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from axonn.intra_layer import auto_parallelize

with auto_parallelize():

net = # declare your sequential model here

5
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Experimental Setup

• Weak scaling

• You can either keep the model size fixed and keep increasing the batch size — embarrassingly parallel.

• Keep the batch sized fixed and increase the model size — a significantly more challenging problem!

• Strong scaling
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Friends don’t let friends use batch sizes larger than 

16M

• Well-established in the ML community: 
batch sizes cannot be increased 
arbitrarily — leads to convergence 
issues

24

https://x.com/ylecun/status/989610208497360896
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Weak scaling performance
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1.38 Exaflop/s

1.41 Exaflop/s
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Summary

• Parallel fine-tuning using AxoNN has enabled large-scale memorization studies in 
LLMs

• Several innovations in AxoNN have enabled us to scale the challenging tensor 
parallelism mode with production (<=16M) batch sizes and very large models to > 
16,000 GPUs

• Achieved flop/s of >1.4 BF16 Exaflop/s

• AxoNN: an open-source highly scalable framework for pre-training/fine-
tuning/inference
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