
CMSC 714
Lecture 4

Chapel and Julia

Alan Sussman

Chapel

• A parallel programming language
• a Partitioned Global Address Space (PGAS) language
• others include UPC/UPC++ (C/C++), Titanium (Java), Co-

Array Fortran (part of the current Fortran standard)

• Target Environment
• Distributed memory machines
• Cache Coherent multi-processors (so multi-core

processors)

CMSC 714 - Alan Sussman 2

PGAS Programming Model

• Partitioned Global Address Space Model
• Provides a global view of memory across the nodes
• Memory is still physically partitioned → local vs. remote

accesses
• But allows for a shared-memory style of communication

8

Message-passing (e.g., MPI)

matching sends/receives
PGAS

just “get” the data

Shared-memory (e.g., OpenMP)

just “get” the data

CMSC 714 - Alan Sussman

Chapel
• Characteristics

• Goal is programmer productivity of OpenMP but functionality
of MPI + OpenMP, so at scale

• separate low-level parallelization and data distribution details
from the algorithm - enable domain scientists to write
efficient parallel code

• Compiler generates communication as needed for non-local
accesses

• Example – SpMV – sparse matrix-vector multiply

CMSC 714 - Alan Sussman 4

Chapel Example

• Sparse Matrix-Vector Multiply (SpMV) - Ax=b

5

• forall is a data parallel loop

• Rows is a block-distributed

array of records (i.e., C

structs)

Assuming 4 locales

and 16 elements
Locale 0

Rows[0]

Rows[1]

Rows[2]

Rows[3]

Rows[4]

Rows[5]

Rows[6]

Rows[7]

Rows[8]

Rows[9]

Rows[10]

Rows[11]

Rows[12]

Rows[13]

Rows[14]

Rows[15]

Locale 1 Locale 2 Locale 3

Rows

Chapel Basics

• Tasks, threads, locales, etc.
• tasks: computations that can conceptually execute concurrently
• threads: mechanisms for executing parallel work
• locales: unit of machine resources (e.g., cores and memory) where

tasks execute
• Usually think of locale as a compute node in a cluster

• domain: represents an index set – for loops and to operate on arrays
• Chapel supports various domain types including associative, sparse, and

unstructured, in addition to ranges of integers (multi-dimensional)

• Data parallel constructs built on top of task parallel ones:
• Via the begin keyword, or co-begin
• And a co-forall loop, where each iteration is a separate task

• on clause - to specify that a statement should execute on a specific
locale (the argument to the on clause)

• Execution model is similar to OpenMP, but more general
• One task starts in one locale
• Tasks created dynamically, using task and data parallel constructs

16

Chapel Performance

• For single-locale programs, execution is fairly
competitive with hand-coded C+OpenMP

• For multiple locales, across multiple machines,
depends on the communication patterns

• For regular patterns (e.g., stencil) performance is
competitive with MPI (but maybe not to very large
number of locales)

• For less regular patterns, compiler still needs a lot of
optimization work

• Underlying communication layer on most high-
performance networks (e.g., Infiniband) is GASNet – one-
sided communication plus active messages

CMSC 714 - Alan Sussman 7

Additional info

• Documentation and more information at
https://chapel-lang.org/

• Current version is 2.3, from late 2024

CMSC 714 - Alan Sussman 8

https://chapel-lang.org/

Julia

CMSC 714 - Alan Sussman 9

Overview

• Julia goals: productivity and performance for
numerical scientific computing

• From “careful language design and the right
combination of carefully chosen technologies that work
very well with each other”

• all basic functionality must be possible to
implement in Julia – no escape to C or something
else lower level

• Users interact with Julia through a standard REPL
(real-eval-print loop environment like Python, R, or
MATLAB), by collecting commands in a .jl file, or by
typing directly into a Jupyter (JUlia, PYThon, R)
notebook

CMSC 714 - Alan Sussman 10

Language Features

• An expressive type system, allowing optional type
annotations (section 3 in paper)

• Multiple dispatch using the types to select
implementations (section 4 in paper)

• Metaprogramming for code generation (section 5.3 in
paper)

• A dataflow type inference algorithm allowing types of
most expressions to be inferred

• Aggressive code specialization against run-time types
• JIT compilation using the LLVM compiler framework,

which is also used by other compilers such as Clang and
Apple’s Swift

• Julia’s carefully written libraries that leverage the
language design

CMSC 714 - Alan Sussman 11

Parallelism in Julia
• Multi-threading

• able to schedule Tasks simultaneously on more than one
thread or CPU core, sharing memory

• multi-threading is composable - when one multi-threaded
function calls another multi-threaded function, Julia will
schedule all the threads globally on available resources,
without oversubscribing

• Can set the number of threads via command line argument, or
through an environment variable – always start execution in
one (main) thread

• Distributed computing
• multiple Julia processes with separate memory spaces, on the

same computer or multiple computers
• Distributed standard library enables remote execution of a

Julia function, using remote calls that return futures and
remote references (of 2 types, Future and RemoteChannel)

• MPI.jl and Elemental.jl provide access to the existing MPI
ecosystem of libraries

CMSC 714 - Alan Sussman 12

Performance

• Can take advantage of multiple types of parallelism
• SIMD instructions, multi-threading on a single node, multiple nodes,

GPUs

• Performance on a single machine/node is “competitive” with C,
esp. for numerical computations

• See https://julialang.org/benchmarks/ for microbenchmarks

• Should be very efficient because of JIT compilation and multiple
dispatch

• Specialize the generated code to the actual types used for each version
(combination of parameter types)

• Generate efficient LLVM intermediate code, then rely on LLVM to
generate efficient machine code

• There have been real applications ported to Julia that achieved
very high performance (i.e. petaflops)

• First example was an astronomy application – processing Sloan Digital
Sky Survey (SDSS) data using the Celeste Julia code, using 1.3M threads
on a DOE supercomputer

• 178TB of image data processed in 14.6 minutes, in 2017, so about
1.5Petaflops

CMSC 714 - Alan Sussman 13

https://julialang.org/benchmarks/

Summary

• For more info on Julia, see https://julialang.org/

• Current version is 1.11, from Jan. 2025

CMSC 714 - Alan Sussman 14

https://julialang.org/

	Slide 1: CMSC 714 Lecture 4 Chapel and Julia
	Slide 2: Chapel
	Slide 3: PGAS Programming Model
	Slide 4: Chapel
	Slide 5: Chapel Example
	Slide 6: Chapel Basics
	Slide 7: Chapel Performance
	Slide 8: Additional info
	Slide 9: Julia
	Slide 10: Overview
	Slide 11: Language Features
	Slide 12: Parallelism in Julia
	Slide 13: Performance
	Slide 14: Summary

