
CMSC 714
High Performance Computing

Lecture 2 - Introduction
https://www.cs.umd.edu/class/spring2025/cmsc714

Alan Sussman

https://www.cs.umd.edu/class/fall2023/cmsc714

Notes

•Slides from 1st lecture posted

•Cluster accounts on zaratan handed out and first
assignment probably late next week

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 2

Last time

•Why parallel computing?
• speed, cost

•Parallel computing basics
• Processing elements, memory, network, disks
• SIMD, MIMD, SPMD, dataflow
• networks

• bus, ring, tree, mesh (2D or 3D), hypercube

• memory
• latency and throughput (bandwidth)

• shared vs. distributed (physically and logically)

• UMA vs. NUMA

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 3

Coordination

•Since parallelism in our view is processors working
together to solve a problem

•Synchronization
• protection of a single object (e.g., locks)
• coordination of processors (e.g., barriers)

•Size of a unit of work by a processor
• need to manage two issues

• load balance - processors have equal work

• coordination overhead - communication and synchronization

• often called “grain” size - coarse grain vs. fine grain

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 4

Terminology: Serial vs. parallel code

•Thread: a unit of execution managed by the OS
• Threads can share memory, multiple ones can run in the

same address space

•Process: heavy-weight, processes do not share
resources such as memory, file descriptors etc.
• A process consists of an address space and one or more

threads running in it

•Serial or sequential code: can only run in a single
thread or process
•Parallel code: can be run on one or more threads or

processes 5

Sources of Parallelism

•Statements
• called “control parallel”
• can perform a series of steps in parallel
• basis of dataflow computers

• Loops
• called “data parallel”
• most common source of parallelism for most programs
• each processor/core gets one (or more) iterations to

perform

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 6

Examples of Parallelism

•Easy (embarrassingly parallel)
• multiple independent jobs (i.e., different simulations)

•Scientific
• dense linear algebra (divide up matrix)
• physical system simulations (divide physical space)

•Databases
• biggest success of parallel computing (divide tuples)

• exploits semantics of relational algebra

•AI
• search problems (divide search space)

• pattern recognition and image processing (divide image)

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 7

Metrics in Application Performance
• Speedup

• ratio of time on one node to time on n nodes

• hold problem size fixed (strong scaling)

• should compare to best serial time

• goal is linear speedup

• super-linear speedup is possible due to:

• adding more memory/cache

• search problems

• Iso-Speedup (or scaled or weak speedup)
• scale data size up with number of nodes

• goal is a flat horizontal curve

• Amdahl's Law
• max speedup is 1/(serial fraction of time), or

1 / (1 – f + f/s) as s →∞

• Computation to Communication Ratio
• goal is to maximize this ratio

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 8

0.1

1

10

100

1000

10000

1 4 16 64 256 1K 4K 16K

E
x
e
cu

ti
o
n
 t

im
e
 (

m
in

u
te

s)

Number of cores

Actual Extrapolation

How to Write Parallel Programs

•Use old serial code
• compiler converts it to parallel
• called the dusty deck problem

• Serial Language plus Communication Library
• no compiler changes required!
• MPI uses this approach

•New language for parallel computing
• requires all code to be re-written
• hard to create a language that provides high performance on

different platforms

•Hybrid Approach – old language(s), new constructs
• PGAS – variants of C/Fortran/Java with combination of shared

memory view of data, but awareness of data being distributed
on the hardware

• have parallel loops and synchronization operations

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 9

Application Example - Weather

•Typical of many scientific codes
• computes results for three dimensional space
• compute results at multiple time steps
• uses equations to describe physics/chemistry of the

problem
• grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

•Simplifications (for example, not in real code)
• earth is flat (no mountains)
• earth is round (poles are really flat, earth bulges at

equator)
• second order properties

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 10

Grid Points
•Divide Continuous space into discrete parts

• for this code, grid size is fixed and uniform
• possible to change grid size or use multiple grids

• use three dimensional grid
• two for latitude and longitude

• one for elevation

• Total of M * N * L points

•Design Choice: where is the grid point?
• left, right, or center of the interval for a grid element

• in multiple dimensions this multiplies:
• for 3 dimensions have 27 possible positions

C RL

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 11

Variables
•One dimensional

• m - geo-potential (gravitational effects)

•Two dimensional
• pi - “shifted” surface pressure
• sigmadot - vertical component of the wind velocity

•Three dimensional (primary variables)
• <u,v> - wind velocity/direction vector
• T - temperature
• q - specific humidity
• p - pressure

•Not included
• clouds
• precipitation
• can be derived from others

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 12

Serial Computation
•Convert equations to discrete form

•Update from time t to t + δt
foreach longitude, latitude, altitude

ustar[i,j,k] = n * pi[i,j] * u[i,j,k]

vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]

sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end

foreach longitude, latitude, altitude

 D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) +

 terms in {i,j,k}{+,-}{1,2}

 piq[i,j,k] = piq[i,j,k] + D * delat

 similar terms for piu, piv, piT, and pi

end

foreach longitude, latitude, altitude

 q[i,j,k] = piq[i,j,k]/pi[i,j,k]

 u[i,j,k] = piu[i,j,k]/pi[i,j,k]

 v[i,j,k] = piv[i,j,k]/pi[i,j,k]

 T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 13

Shared Memory Version

• in each loop nest, iterations are independent

• use a parallel for-loop for each loop nest

• synchronize (barrier) after each loop nest
• this is overly conservative, but works
• could use a single sync variable per element, but would incur

excessive overhead

• potential parallelism is M * N * L

• private variables: D, i, j, k

•Advantages of shared memory
• easier to get something working (ignoring performance)

•Hard to debug
• other processors can modify shared data

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 14

Distributed Memory Version
• decompose data to specific processors

• assign a cube to each processor

• maximize volume to surface ratio

• which minimizes communication/computation ratio

• called a <block,block,block> distribution

• need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
• use send/receive to move the data

• no need for barriers, send/receive operations provide sync

• do sends earlier in computation to hide communication time

• Advantages
• easier to debug? maybe

• consider data locality explicitly with data decomposition

• better performance/scaling

• Problems
• harder to get the code running

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 15

Database Applications
• Too much data to fit in memory (or sometimes disk)

• data mining applications (K-Mart had a 4-5TB database many
years ago)

• imaging applications (NASA and others have sites with
multiple petabytes to exabytes)
• use a fork lift to load tapes by the pallet

• Sources of parallelism
• within a large transaction

• among multiple transactions

• Join operation
• form a single table from two tables based on a common field

• try to split join attribute into disjoint buckets
• if know data distribution is uniform its easy

• if not, try hashing

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 16

Parallel Search (TSP)
•may appear to be faster than 1/n

• but this is not really the case either

•Algorithm
• compute a path on a processor

• if our path is shorter than the shortest one, send it to the others.

• stop searching a path when it is longer than the shortest.

• before computing next path, check for word of a new
min path

• stop when all paths have been explored.

•Why it appears to be faster than 1/n speedup
• we found the path that was shorter sooner
• however, the reason for this is a different search order!

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 17

Load balance and grain size

• Load balance: try to balance the amount of work
(computation) assigned to different threads/
processes
• Bring ratio of maximum to average load as close to 1 as

possible

• Secondary consideration: also load balance amount of
communication

•Grain size: ratio of computation-to-communication
• Coarse-grained (more computation) vs. fine-grained

(more communication)

18

Ensuring a fair speedup

• Tserial = fastest of
• best known serial algorithm

• simulation of parallel computation
• use parallel algorithm

• run all processes on one processor

• parallel algorithm run on one processor

• If speedup appears to be super-linear
• check for memory hierarchy effects

• increased cache or real memory may be reason

• verify order of operations is the same in parallel and serial
cases

CMSC714 - S25 - Alan Sussman and Abhinav Bhatele 19

	Slide 1: CMSC 714 High Performance Computing Lecture 2 - Introduction https://www.cs.umd.edu/class/spring2025/cmsc714
	Slide 2: Notes
	Slide 3: Last time
	Slide 4: Coordination
	Slide 5: Terminology: Serial vs. parallel code
	Slide 6: Sources of Parallelism
	Slide 7: Examples of Parallelism
	Slide 8: Metrics in Application Performance
	Slide 9: How to Write Parallel Programs
	Slide 10: Application Example - Weather
	Slide 11: Grid Points
	Slide 12: Variables
	Slide 13: Serial Computation
	Slide 14: Shared Memory Version
	Slide 15: Distributed Memory Version
	Slide 16: Database Applications
	Slide 17: Parallel Search (TSP)
	Slide 18: Load balance and grain size
	Slide 19: Ensuring a fair speedup

