
CMSC 451 Dave Mount

CMSC 451: Lecture 9
DP: Longest Common Subsequence and Edit Distance

Strings: In this lecture we continue our study of dynamic programming algorithms. One impor-
tant area of algorithm design is the study of algorithms for character strings. Finding patterns
or similarities within strings is fundamental to various applications, ranging from document
analysis to computational genomics. We study two widely studied measures of string simi-
larity, longest common subsequence and edit distance. Today, we will consider efficient DP
solutions to these problems.

Longest Common Subsequence: Consider two character sequences, that is, strings,

X = ⟨x1, x2, . . . , xm⟩ and Z = ⟨z1, z2, . . . , zk⟩,

where xi and zj are elements over some given alphabet, Σ. (For example Σ = {a, b, c, . . . , z}
or Σ = {A,G,C, T}.) Let |X| denote the number of characters in X.

We say that Z is a subsequence of X its characters all appear in order in X. More formally,
there is a strictly increasing sequence of k indices ⟨i1, i2, . . . , ik⟩ (1 ≤ i1 < i2 < . . . < ik ≤ n)
such that Z = ⟨xi1 , xi2 , . . . , xik⟩ (see Fig. 2).

A A D A AZ =

A B AX = R C A D A B AR

Fig. 1: The string Z = ⟨AADAA⟩ is a subsequence of X = ⟨ABRACADABRA⟩.

Given two strings X and Y , the longest common subsequence of X and Y is a longest sequence
Z that is a subsequence of both X and Y . For example, let X = ⟨ABRACADABRA⟩ and let
Y = ⟨YABBADABBADOO⟩. Then the longest common subsequence is Z = ⟨ABADABA⟩
(see Fig. 2).

Y A BB A D A B B A D O OY =

A B AX = R C A D A B AR

A B ALCS = D A B A

Fig. 2: An example of the LCS of two strings X and Y .

The Longest Common Subsequence Problem (LCS) is the following. Given two sequences X =
⟨x1, . . . , xm⟩ and Y = ⟨y1, . . . , yn⟩ determine the length of their longest common subsequence,
and more generally the sequence itself. Note that the subsequence is not necessarily unique.
For example the LCS of ⟨ABC⟩ and ⟨BAC⟩ is either ⟨AC⟩ or ⟨BC⟩.

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all
possible subsequences from one string, and search for matches in the other string, but this is
hopelessly inefficient, since there are an exponential number of possible subsequences.

Lecture 9 1 Spring 2025

CMSC 451 Dave Mount

Instead, we will derive a dynamic programming solution. In typical DP fashion, we decompose
the problem into subproblems, which can be solved recursively. There are many ways to do
this for strings, but it turns out for this problem that considering all pairs of prefixes will
suffice for us. Given 0 ≤ i ≤ |X|, the ith prefix of X, denoted Xi, is the initial substring
length i, that is, Xi = ⟨x1, . . . , xi⟩. Define X0 = ⟨⟩ to be the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of
prefixes. For 0 ≤ i ≤ |X| and lcs(i, j) denote the length of the longest common subsequence
of Xi and Yj . For example, in the above case we have X5 = ⟨ABRAC⟩ and Y6 = ⟨YABBAD⟩.
Their longest common subsequence is ⟨ABA⟩. Thus, lcs(5, 6) = 3.

Let us start by deriving a recursive formulation for computing lcs(i, j). Later, we will consider
how to implement this recursion efficiently.

Basis: If either sequence is empty, then the longest common subsequence is clearly empty.
Therefore, lcs(i, 0) = lcs(j, 0) = 0.

Last characters match: Suppose xi = yj . For concreteness, let’s imagine that this letter
is ‘A’. Since both strings end in ‘A’, it is easy to see that the LCS must also end in ‘A’.1

Also, there is no harm in assuming that the last two characters of both strings will be
matched with each other in forming the LCS. (Matching the last ‘A’ of one string to an
earlier instance of ‘A’ of the other can only limit our future options.)

Since the ‘A’ is the last character of the LCS, we can remove it from both strings and
continue to find a common subsequence of the prefixes Xi−1 and Yj−1. Since the removal
of the last character has no impact on this subproblem, we should solve it optimally.
Therefore, the length of the final LCS is lcs(Xi−1, Yj−1) + 1 (see Fig. 3). This provides
us with the following rule:

if (xi = yj) then lcs(i, j) = lcs(i− 1, j − 1) + 1

A

xi

Xi

A

yj
Yj

A

A

+ 1lcs(i− 1, j − 1)

Xi−1

Yj−1

Fig. 3: LCS of two strings, where xi = yj .

For example, suppose that Xi = ⟨ABCA⟩ and let Yj = ⟨DACA⟩. We match the final
‘A’ characters, compute the LCS length of Xi−1 = ⟨ABC⟩ and Yj−1 = ⟨DAC⟩, which is
⟨AC⟩. We then ‘A’ back, which yields the final LCS of ⟨ACA⟩.

Last characters do not match: Suppose that xi ̸= yj . In this case xi and yj cannot both
be in the LCS (since they would have to be the last character of the LCS). Thus either
xi is not part of the LCS, or yj is not part of the LCS (and possibly both are not part
of the LCS). Let’s consider these two options.

1We will leave the formal proof as an exercise, but intuitively this is proved by contradiction. If the LCS did not
end in ‘A’, then we could make it longer by adding ‘A’ to its end.

Lecture 9 2 Spring 2025

CMSC 451 Dave Mount

xi is not in the LCS: Since we know that xi is out, we can remove the last character
from Xi, which leaves us with Xi−1. We continue to compute the LCS of Xi−1 and
Yj , which is given by lcs(i− 1, j).

yj is not in the LCS: Since we know that yj is out, we can remove the last character
from Yj , which leaves us with Yj−1. We continue to compute the LCS of of Xi and
Yj−1, which is given by lcs(i, j − 1).

At this point it may be tempting to try to make a “smart” choice. By analyzing the
last few characters of Xi and Yj , perhaps we can figure out which character is best to
discard. However, this approach is doomed to failure (and you are strongly encouraged
to think about this, since it is a common point of confusion). Remember the DP selection
principle: When given a set of feasible options to choose from, try them all and take the
best.

Let’s not try to be smart. Consider both options, and see which one provides the better
result.

A

xi

Xi

B

yj
Yj

AXi−1

Yj

lcs(i− 1, j)

B

skip xi

B

Xi

Yj−1

lcs(i, j − 1)

skip yj

A

max

Fig. 4: LCS of two strings, where xi ̸= yj .

We compute both options and take the one that gives us the longer LCS (see Fig. 4).
(Hey, did we forget Option 3, where neither symbol is in the LCS? Yes, this can happen,
but these two rules suffice to handle this. Try it out and you’ll see.) Thus, we have the
following rule:

if (xi ̸= yj) then lcs(i, j) = max(lcs(i− 1, j), lcs(i, j − 1))

Combining these observations we have the following recursive DP formulation:

lcs(i, j) =

0 if i = 0 or j = 0,
lcs(i− 1, j − 1) + 1 if i, j > 0 and xi = yj ,
max(lcs(i− 1, j), lcs(i, j − 1)) if i, j > 0 and xi ̸= yj .

Memoized implementation: The principal source of the inefficiency in a naive implementation
of the recursive rule is that it makes repeated calls to lcs(i, j) for the same values of i and
j. To avoid this, it creates a 2-dimensional array lcs[0..m, 0..n], where m = |X| and n = |Y |.
We initialize its elements to −1, which indicates that the entry is currently undefined. The
memoized version first checks whether the requested value has already been computed, and

Lecture 9 3 Spring 2025

CMSC 451 Dave Mount

if so, it just returns the cached value. Otherwise, it invokes the recursive rule to compute it.
Our objective is to compute the LCS of the entire strings of lengths m and n, so the initial
call is memo-lcs(m,n).

Because we will eventually want to construct the final LCS, we will also add some “hooks” to
our code to record our decisions. We create a parallel hook table, H[0..n, 0..m], which stores
three possible values.

+ : Add xi(= yj) to the end of the LCS. (Represented by the symbol ‘↖’.)

X : Do not include xi to the LCS. (Represented by the symbol ‘↑’.)
Y : Do not include yj to the LCS. (Represented by the symbol ‘←’.)

The algorithm is presented in the code block below. See Fig. 5(a) for an example. (We’ll
discuss the H-table later.)

Memoized LCS with Hooks
memo-lcs(i,j) { // memoized implentation of LCS

if (lcs[i,j] == -1) { // undefined?

if (i == 0 || j == 0) { // basis case

lcs[i,j] = 0

} else if (x[i] == y[j]) { // last characters match

lcs[i,j] = memo-lcs(i-1, j-1) + 1

H[i,j] = ’+’

} else { // last chars don’t match

skipX = memo-lcs(i-1, j) // length if we skip X

skipY = memo-lcs(i, j-1) // length if we skip Y

if (skipX >= skipY) // better to skip X

lcs[i,j] = skipX; H[i,j] = ’X’

else // better to skip Y

lcs[i,j] = skipY; H[i,j] = ’Y’

}

}

return lcs[i,j] // return lcs length

}

Correctness follows from the correctness of the DP formulation. The running time is O(mn).
To see this, observe that there are (m + 1)(n + 1) = O(mn) entries in the table. The body
of each recursive call runs in O(1) time. Each call either returns immediately or fills in one
more entry in the tables. Thus, the total time is proportional to the total number of table
entries, which is O(mn).

Extracting the LCS: Next, let us see how to use our hooks to extract the final LCS. We will start
at the end with H[m,n] and trace the optimal recursion path back to H[0, 0]. If H[i, j] = +,
this means that xi = yj , and we are putting this common character into the LCS. We add this
character to the LCS, and continue with H[i−1, j−1]. If H[i, j] = X, this means that we are
skipping character xi, and continuing with H[i−1, j]. Finally, if H[i, j] = Y , this means that
we are skipping character yj , and continuing with H[i, j − 1]. The code is presented below.
An example of the trace-back is shown in Fig. 5(b).

Lecture 9 4 Spring 2025

CMSC 451 Dave Mount

B D C B

B

A

C

D

B

1

2

3

4

m = 5

0

1 2 3 40

0 0 0 0 0

0

0

0

0

0

1 1 1 1

1 1

1

1

1 1 1 1

2 2

2 2

2 2

2

3

= nX = ⟨BACDB⟩
Y = ⟨BDCB⟩

|LCS| = 3

B D C B

B

A

C

D

B

1

2

3

4

m = 5

0

1 2 3 40

0 0 0 0 0

0

0

0

0

0

1 1 1 1

1 1

1

1

1 1 1 1

2 2

2 2

2 2

2

3

= n

(a) (b)

start here

Add xi(= yj)

Skip xi
Skip yj

LCS = ⟨BCB⟩

Fig. 5: (a) Contents of the lcs array for the input sequences X = ⟨BACDB⟩ and Y = ⟨BCDB⟩.
The numeric table entries are the values of lcs[i, j]. (b) Illustrates the H-table and the extraction
of the final sequence.

Extracting the LCS using the Hints
get-lcs-sequence() { // get the LCS sequence

LCS = empty

i = m; j = n // start at lower right

while(i != 0 or j != 0) // loop until i == j == 0

switch H[i,j]

case ’+’ -> // add x[i] (= y[j])

prepend x[i] to LCS; i--; j--;

case ’X’ -> // skip x[i]

i--

case ’Y’ -> // skip y[j]

j--

return LCS

}

Bottom-up implementation: (Optional) The alternative to memoization is to just create the
lcs table in a bottom-up manner, working from smaller entries to larger entries. By the
recursive rules, in order to compute lcs[i, j], we need to have already computed lcs[i−1, j−1],
lcs[i−1, j], and lcs[i, j−1]. Thus, we can compute the entries row-by-row or column-by-column
in increasing order. See the code block below and Fig. 5(a). The running time and space
used by the algorithm are both clearly O(mn).

Edit Distance: A more widely used measure of string similarity than LCS is the edit-distance.
This is widely used in the field of computational genomics, when analyzing the similarity of
DNA/RNA sequences.

Given two strings X = ⟨x1, . . . , xm⟩ and Y = ⟨y1, . . . , yn⟩, the edit distance is the minimum
number of primitive operations needed to convert X into Y . Primitive operations include
things like inserting a character, deleting a character, changing the value of a character, or
swapping two adjacent characters. Generally, we may apply weights to these choices (e.g.,
favoring insertion over deletion). Let’s keep this simple by focusing on just three operations:
insert, delete, and change in the unweighted case. (For example, in Fig. 6) we show that

Lecture 9 5 Spring 2025

CMSC 451 Dave Mount

Bottom-up Longest Common Subsequence
bottom-up-lcs() { // bottom-up implementation of LCS

lcs = new array [0..m, 0..n]

for (i = 0 to m) lcs[i,0] = 0 // basis cases

for (j = 0 to n) lcs[0,j] = 0

for (i = 1 to m) { // fill rest of table

for (j = 1 to n) {

if (x[i] == y[j]) // take x[i] (= y[j]) for LCS

lcs[i,j] = lcs[i-1, j-1] + 1

else

lcs[i,j] = max(lcs[i-1, j], lcs[i, j-1])

}

}

return lcs[m, n] // final lcs length

}

the X and be converted Y through 9 edit operations.) The minimum number of insertions,
deletions, and changes to convert one string to another is called the Levenshtein distance
between these strings. It is named for the Soviet mathematician Vladimir Levenshtein, who
invented way back in 1965.

Y A B B A D A B B A D O OY =

A B AX = R C A D A B AR

BR → Y C → B D O O Insert ‘O’

Delete ‘R’ Change ‘R’ to ‘B’

Lev(X, Y) = 9

R → B

Fig. 6: Levenshtein distance for X = ⟨ABRACADABRA⟩ and Y = ⟨YABBADABBADOO⟩.

Let’s develop a DP formulation for this problem. We will follow a pattern similar to the LCS
problem. For 0 ≤ i ≤ m and 0 ≤ j ≤ n, let Lev(i, j) denote the Levenshtein distance between
the prefixes Xi = ⟨x1, . . . , xi⟩ and Yi = ⟨y1, . . . , yj⟩. Let’s explore the various cases.

Basis: If either sequence is empty, then the edit distance is equal to the number of characters
in the other string. If Xi is empty, then we need to insert all j characters of Yj . If Yj is
empty, then we need to delete all i characters of Xi. Thus, we have following rules:

if i = 0 then Lev(i, j) = j
if j = 0 then Lev(i, j) = i

Last characters match: If xi = yj , then we should go ahead and match these characters.
(It costs us nothing to do so, and if we were to hold out to match one of these with
an earlier instance of the same character, this would only limit our future options.)
This does not incur any increase in the edit distance, and what remains is to match the
remaining prefixes, Xi−1 and Yj−1. Since the removal of the last character has no impact
on this subproblem, we should solve it optimally. Therefore, the Leveshtein distance is
Lev(Xi−1, Yj−1) (see Fig. 3). This provides us with the following rule:

Lecture 9 6 Spring 2025

CMSC 451 Dave Mount

if (xi = yj) then Lev(i, j) = Lev(i− 1, j − 1)

A

xi
Xi

A

yj
Yj

A

A

Xi−1

Yj−1

Lev(i− 1, j − 1)

Fig. 7: LCS of two strings, where xi = yj .

For example, suppose that Xi = ⟨ABCA⟩ and let Yj = ⟨DACA⟩. We match the final
‘A’ characters, compute the LCS length of Xi−1 = ⟨ABC⟩ and Yj−1 = ⟨DAC⟩, which is
⟨AC⟩. We then ‘A’ back, which yields the final LCS of ⟨ACA⟩.

Last characters do not match: If the last character do not match, that is, xi ̸= yj . We
know that some edit operation will be needed, but which? There are three options (see
Fig. 8).

Insert yj at the end of Xi: This increases the distance by +1. After doing so, the
character yj has been accounted for. What remains is to compute the distance
between Xi with the remainder, Yj−1. In this case, Lev(i, j) = 1 + Lev(i, j − 1).

A

xi
Xi

B

yj
Yj

A

xi
Xi

BYj−1

AXi−1

BYj

AXi−1

BYj−1

+1: change xi to yjLev(i− 1, j − 1)

+1: insert yj

+1: delete xi
min

Lev(i− 1, j)

Lev(i, j − 1)

Fig. 8: LCS of two strings, where xi = yj .

Delete xi: This increases the distance by +1. After doing so, the character xi has been
accounted for. What remains is to compute the distance between the remainder,
Xi−1, with Yj . In this case, Lev(i, j) = 1 + Lev(i− 1, j).

Change xi into yj: This increases the distance by +1. After doing so, both the char-
acters xi and yj have been accounted for. What remains is to compute the distance
between the remainders, Xi−1 and Yj−1. In this case, Lev(i, j) = 1+Lev(i−1, j−1).

Lecture 9 7 Spring 2025

CMSC 451 Dave Mount

At this point it may be tempting to try to make a “smart” choice. But, in customary
DP fashion, we do not attempt to determine which action is best. We just try them all
and take the best, that is, the one that achieves the minimum value. Thus, we have the
rule:

if (xi ̸= yj) then Lev(i, j) = 1 +min(Lev(i, j − 1),Lev(i− 1, j),Lev(i− 1, j − 1))

In summary, we have the following recursive DP formulation for the Levenshtein distance:

Lev(i, j) =

i if j = 0,
j if i = 0,
Lev(i− 1, j − 1) if min(i, j) > 0 and xi = yj ,

1 + min

 Lev(i, j − 1),
Lev(i− 1, j),

Lev(i− 1, j − 1)

 if min(i, j) > 0 and xi ̸= yj .

We will leave the implementation (whether memoized or bottom-up) as an exercise. Both
are quite similar in structure to the LCS code. The same is true for adding the necessary
“hooks” (match, insert, delete, or change). As with LCS, the running time is O(mn).

Summary: We have presented DP algorithms for two problems in string similarity, longest com-
mon subsequence (LCS) and the edit or Levenshtein distance. Both algorithms run in time
that is proportional to the product of the lengths of the two strings. Needless to say, this is
unacceptably slow in many applications where string sizes can be large.

Can we do better? There are near linear-time algorithms for LCS (see Wikipedia). There are
many tricks and heuristics for speeding up edit distance in practice. Unfortunately, there is
pretty strong evidence that in the worst case, you cannot do much better for the Levenshtein
distance. It has been proved that the Levenshtein distance for two strings of length n cannot
be computed in time O(n2−ε), for any ε > 0, unless the Strong Exponential Time Hypothesis
(SETH, for short) is false. It is beyond the scope of this lecture to introduce SETH is, but it
is widely held to be true.

Lecture 9 8 Spring 2025

