
CMSC 451 Dave Mount

CMSC 451: Lecture 8
Dynamic Programming: Weighted Interval Scheduling

Dynamic Programming: In this lecture we begin our coverage of an important algorithm design
technique, called dynamic programming (or DP for short). The technique is among the most
powerful for designing algorithms for optimization problems. Dynamic programming is a
powerful technique for solving optimization problems that have certain well-defined clean
structural properties. (The meaning of this will become clearer once we have seen a few
examples.)

There is a superficial resemblance to divide-and-conquer, in the sense that it breaks problems
down into smaller subproblems, which can be solved recursively. However, unlike divide-
and-conquer problems, in which the subproblems are disjoint, in dynamic programming the
subproblems typically overlap each other, and this renders straightforward recursive solutions
inefficient.

Dynamic programming solutions rely on two important structural qualities, optimal substruc-
ture and overlapping subproblems.

Optimal substructure: This property (sometimes called the principle of optimality) states
that for the global problem to be solved optimally, each subproblem should be solved
optimally. While this might seem intuitively obvious, not all optimization problems
satisfy this property. For example, it may be advantageous to solve one subproblem
sub-optimally in order to conserve resources so that another, more critical, subproblem
can be solved optimally.

Overlapping Subproblems: While it may be possible subdivide a problem into subprob-
lems in exponentially many different ways, these subproblems overlap each other in such
a way that the number of distinct subproblems is reasonably small, ideally polynomial
in the input size.

An important issue is how to generate the solutions to these subproblems. There are two
complementary (but essentially equivalent) ways of viewing how a solution is constructed:

Top-Down: A solution to a DP problem is expressed recursively. This approach applies
recursion directly to solve the problem. However, due to the overlapping nature of
the subproblems, the same recursive call is often made many times. An approach,
called memoization, records the results of recursive calls, so that subsequent calls to
a previously solved subproblem are handled by table look-up.

Bottom-up: Although the problem is formulated recursively, the solution is built iter-
atively by combining the solutions to small subproblems to obtain the solution to
larger subproblems. The results are stored in a table.

In the next few lectures, we will consider a number of examples, which will help make these
concepts more concrete.

Weighted Interval Scheduling: Let us consider a variant of a problem that we have seen before,
the Interval Scheduling Problem. Recall that in the original (unweighted) version we are given
a set R = {r1, . . . , rn} of n requests to be scheduled on an exclusive resource (e.g., a picnic

Lecture 8 1 Spring 2025

CMSC 451 Dave Mount

table at a local park). Each request has a start-finish time interval, [si, fi]. The objective is
to compute any maximum sized subset of non-overlapping intervals (see Fig. 1(a)).

optimal unweighted optimal weighted

(a) (b)

opt = 3 opt = 141

1

1

1

1

1

2

6

2.5

7

8

1.1

Fig. 1: Weighted and unweighted interval scheduling.

In weighted interval scheduling, we assume that in addition to the start and finish times, each
request is associated with a numeric weight or value, call it vi, and the objective is to find a
set of non-overlapping requests such that sum of values of the scheduled requests is maximum
(see Fig. 1(b)). The unweighted version can be thought of as a special case in which all
weights are equal to 1. Although a greedy approach works fine for the unweighted problem,
no greedy solution is known for the weighted version. We will demonstrate a method based
on dynamic programming.

Recursive Formulation: Dynamic programming solutions are based on a decomposition of a
problem into smaller subproblems. Let us consider how to do this for the weighted interval
scheduling problem. As we did in the greedy algorithm, it will be convenient to sort the
requests in non-decreasing order of finish time, so that f1 ≤ . . . ≤ fn.

Here is the idea behind DP in a nutshell. Consider the last request [sn, fn]. There are two
possibilities. If this request is not in the optimum schedule, then we can safely ignore it, and
recursively compute the optimum solution of the first n− 1 requests. Otherwise, this request
is in the optimal solution. We will schedule this request (receiving the profit of vn) and then
we must eliminate all the requests whose intervals overlap this one. Because requests have
been sorted by finish time, this involves finding the largest index p such that fp < sn. Thus,
we solve the problem recursively on the first p requests.

But we don’t know the optimum solution, so how can we select among these two options?
The answer is that we will compute the cost of both of them recursively, and take the better
of the two.

Let’s now implement this idea. Recall that the requests are sorted by finish times. For the
sake of generality, let’s assume that we want to solve the problem on requests 1 through j,
where 0 ≤ j ≤ n. If j = 0, there is nothing to do. Otherwise, given any request j, define
prior(j) to be the largest integer such that fprior(j) < sj , that is, prior(j) is latest request by
finish times that does not overlap request j. If no such i exists (that is, all the preceding
intervals overlap), let prior(j) = 0 (see Fig. 2). This means that if request j is put in the
schedule, we are free to include request prior(j) and an earlier ones.

Lecture 8 2 Spring 2025

CMSC 451 Dave Mount

1

2

3

2

6

3.5

4 7

5 8

6 1.1

j intervals and values prior(j)

0

0

1

0

3

3

Fig. 2: Weighted interval scheduling input and prior-values.

For now, let’s just concentrate on computing the optimum total value. Later we will consider
how to determine which requests produce this value. A natural idea would be to define a
function that gives the optimum value for just the first i requests.

Definition: For 0 ≤ j ≤ n, W (j) denotes the maximum possible value achievable if we
consider just requests {1, . . . , j} (assuming that requests are given in order of finish
time).

As a basis case, observe that if we have no requests, then we have no value. Therefore,
W (0) = 0. If we can compute W (j) for each value of j, then clearly, the final desired result
will be the maximum value using all the requests, that is, W (n).

Summarizing our earlier observations, in order to computeW (j) for an arbitrary j, we observe
that there are two possibilities:

Request j is not in the optimal schedule: If j is not included in the schedule, then we
should do the best we can with the remaining j−1 requests. Therefore, W (j) = W (j−1).

Request j is in the optimal schedule: If we add request j to the schedule, then we gain
vj units of value, but we are now limited as to which other requests we can take. We can-
not take any of the requests following prior(j). Thus we have W (j) = vj +W (prior(j)).

Ignoring the basis case (j = 0) there are two options. Clearly, we take the better of the two.

W (j) =


0 if j = 0 (basis)

max

{
W (j − 1) (reject j)
vj +W (prior(j)) (accept j)

}
if j > 0

The optimal solution for all the requests isW (n). Note that the principle of optimality applies
here. When we make the recursive invocations to W (j− 1) and W (prior(j)), we should solve
these problems optimally. (Their solutions are independent of the choices we have made that
brought us here, so there is no harm in doing the best we can in solving them.)

How do we know which of the these two options (accept or reject) to select? We will see in
the next section that evaluating both of them in a straightforward manner will lead to a high
running time. While it is tempting to try to determine which option is better (e.g., higher
value or shorter duration), the basic law of dynamic programming is to act stupid—just try
both and take the better option.

Lecture 8 3 Spring 2025

CMSC 451 Dave Mount

Recursive Implementation (Slow!): The simplest implementation would be to express the re-
cursive formulation as a recursive function. See the following code block. We first sort the
requests by finish time and precompute the values of prior(j), which we store in an array. We
then invoke the recursive function rec-WIS(n) to compute the best total cost.

Recursive Weighted Interval Scheduling (Inefficient!)
WIS(s[1..n], f[1..n], v[1..n]) { // recursive WIS (slow)

Sort requests by finish time

Compute prior[j] for j = 1, ..., n (Exercise)

return rec-WIS(n) // total value of all requests

}

rec-WIS(j) { // total value of 1 .. j

if (j == 0) return 0 // basis

else return max(

rec-WIS(j-1), // reject j

v[j] + rec-WIS(prior[j])) // accept j

}

The correctness of this procedure follows from the previous discussion. The running time
will be a problem, however. To make this concrete, let us suppose that prior(j) = j − 2,
for all j. (Convince yourself that you can construct a set of intervals to make this happen.)
Let T (j) be the number of recursive function calls to rec-WIS(0) that result from a single
call to rec-WIS(j). Clearly, T (0) = 1, T (1) = T (0) + T (0), and for j ≥ 2, we have T (j) =
T (j − 1) + T (j − 2) (see Fig 3). If you start expanding this recurrence, you will find that the
resulting series is essentially a Fibonacci series:

j 0 1 2 3 4 5 6 7 8 . . . 20 30 50
T (j) 1 2 3 5 8 13 21 34 55 . . . 17,711 2,178,309 32,951,280,099

It is well known that the Fibonacci series F (j) grows exponentially as a function of j, in par-
ticular F (n) ≈ ϕn, where ϕ ≈ 1.618. Our running time is at least T (n), which is exponential
in n.

wis(1)

wis(0) wis(0)

wis(2)

wis(0) wis(1)

wis(0) wis(0)

wis(3)wis(2)

wis(0) wis(1)

wis(0) wis(0)

wis(4)

wis(1)

wis(0) wis(0)

wis(2)

wis(0) wis(1)

wis(0) wis(0)

wis(3)

wis(5)

Fig. 3: The exponential nature of recursive-WIS.

Lecture 8 4 Spring 2025

CMSC 451 Dave Mount

Memoized Formulation (and Extracting the Schedule): The problem with the simple re-
cursive formulation is that it repeatedly calls the same function. To save time, let’s just
cache (or save) the value, and look it up later if needed. This process is called memoization.
(Intuitively, we are making a “memo” to ourselves of what the value is for future reference.)
The algorithm below saves the values of W (j) in an array W [j]. This results in significantly
fewer recursive calls (see Fig. 4), with only one recursive call for each j.

wis(4)

wis(1)

wis(0) Lookup

wis(2)

wis(3)

wis(5)

Lookup Lookup

Lookup Lookup

Fig. 4: Recursive calls in memoized WIS. (Highlighted squares are recursive calls, and the others
are table lookups.)

Initially, we set W [j] = −1 for 0 ≤ j ≤ n, so we know that its value has not been initialized.
The modified algorithm is presented in the code-block below. We will add one additional
piece of information, which will help in reconstructing the final schedule. Whenever a choice
is made between two options, we’ll save a flag that indicates whether we accepted or rejected
the current request. In particular, we maintain a boolean array accept, and we set accept[j]
to true if j was accepted and otherwise we set it to false. The resulting algorithm is presented
in the following code block. As before, assume that requests have been sorted by finish time
and the array prior[1..n] has been computed.

Memoized Weighted Interval Scheduling
memo-WIS(j) { // memoized WIS implementation

if (j == 0) return 0 // basis case - no requests

else if (W[j] has been computed) return W[j]

else {

rejectVal = memo-WIS(j-1) // value if we reject j

acceptVal = v[j] + memo-WIS(prior[j]) // value if we accept j

if (rejectVal > acceptVal) { // better to reject

W[j] = rejectVal

accept[j] = true // remember our choice

} else { // better to accept

W[j] = acceptVal

accept[j] = false // remember our choice

}

return W[j] // final value

}

}

An example is shown in Fig. 5. The memoized version runs in O(n) time. To see this, observe
that each invocation of memo-WIS either returns in O(1) time (with no recursive calls), or it
computes one new entry of W . Since there are n entries in the table, the latter can occur at

Lecture 8 5 Spring 2025

CMSC 451 Dave Mount

most n times.

1

2

3

4

5

6

j

0

3

1

prior

0

0

3

W

0

2

0

2

6

0

2

6

6

0

2

6

6

7

0

2

6

6

7

14

0

2

6

6

7

14

14

1

2

3

4

5

6

0

2

6

3.5

7

8

1.1

(a) (b)

T

accept

(c)

F

T

T

T

F

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 5: (a) The input intervals and prior values, (b) the bottom-up construction of the table and
accept flags, (c) the final accept values.

Bottom-up Construction: (Optional) Yet another method for computing the values of the array,
is to dispense with the recursion altogether, and simply fill the table up, one entry at a time.
We need to be careful that this is done in such an order that each time we access the array,
the entry being accessed is already defined. This is easy here, because we can just compute
values in increasing order of j. As before, we include the computation of the accept flags.

Bottom-Up Weighted Interval Scheduling
bottom-up-WIS() { // bottom-up WIS implementation

W[0] = 0 // basis

for (i = 1 to n) {

rejectVal = W[j-1] // value if we reject j

acceptVal = v[j] + W[prior[j]] // value if we accept j

if (rejectVal > acceptVal) { // better to reject

W[j] = rejectVal

accept[j] = true // remember our choice

}

else { // better to accept

W[j] = acceptVal

accept[j] = false // remember our choice

}

}

return W[n]

}

Do you think that you understand the algorithm now? If so, answer the following question.
Would the algorithm be correct if, rather than sorting the requests by finish time, we had
instead sorted them by start time? How about if we didn’t sort them at all?

Computing the Final Schedule: So far we have seen how to compute the value of the optimal
schedule, but how do we compute the schedule itself? This is a common problem that arises

Lecture 8 6 Spring 2025

CMSC 451 Dave Mount

in many DP problems, since most DP formulations focus on computing the numeric optimal
value, without consideration of the object that gives rise to this value.

We use the accept[j] values to address this. We start with W [n] and work backwards. We
know that value of W [j] arose from two distinct possibilities, accept or reject. If we accepted
request j, then we add j to the schedule and continue with prior[j]. Otherwise, we add nothing
to the schedule and we continue with j−1. The algorithm for generating the schedule is given
in the code block below.

Computing Weighted Interval Scheduling Schedule
get-schedule() { // get the WIS schedule

j = n // start with the last request

sched = empty

while (j > 0) {

if (accept[j]) { // accepted request j?

prepend j to the front of sched

j = prior[j]

} else

j = j-1

}

return sched // return the final schedule

}

The computation of the final schedule is illustrated in Fig. 6.

� Since accept[6] = F, we reject 6 and continue with 6− 1 = 5.

� Since accept[5] = T, we accept 5 and continue with prior[5] = 3.

� Since accept[3] = F, we reject 3 and continue with 3− 1 = 2.

� Since accept[2] = T, we accept 2 and continue with prior[2] = 0 (and terminate since
j = 0).

We obtain the final schedule ⟨2, 5⟩.

T

F

T

T

T

F

1

2

3

4

5

6

Accept 5

Accept 2
0

3

1

prior

0

0

3 Reject 6

Reject 3

1

2

3

4

5

6

1

2

3

4

5

6

j

2

6

3.5

7

8

1.1

T

accept

F

T

T

T

F

accepted

Fig. 6: Using the accept flags to compute the final schedule.

Lecture 8 7 Spring 2025

