
CMSC 451 Dave Mount

CMSC 451: Lecture 7
Greedy Approximation: Set Cover

Set Cover: An important class of optimization problems involves covering a certain domain with
minimum number of sets. Covering problems arise in many applications of science and engi-
neering:

Surveilance: You want to place cameras in an environment to monitor a given region. Each
possible camera position can view a certain region. Cameras are expensive to place and
operate. What is the minimum number of camera placements to monitor the entire
environment?

Wireless Coverage: You want to place wireless routers around a college campus so that
every location is within range of some transmitter. Coverage regions vary due to the
presence of obstacles. What is the minimum number of transmitters are needed to cover
the entire campus?

Workforce scheduling: You are the manager of a large service center. Workers have various
constraints on where/when they can work. Your job is to assign a minimum number of
workers to cover all the stations/hours needed.

Many of these problems can be expressed abstractly as the set cover problem. We are given a
pair Σ = (X,S), called a set system, where X = {x1, . . . , xn} is a finite set of objects, called
the universe. This is the domain to be covered. S = {s1, . . . , sm} is a collection of subsets
of X. We assume that every element of X belongs to at least one set of S. Throughout, let
n = |X| and and m = |S|.
Given such a set system (X,S), the set cover problem is to determine the smallest number of
sets of S needed to cover X. For example, in Fig. 1(a), the elements of X are the 12 black
circles, and the sets s1, . . . , s6 are indicated by the blue regions. In this case there exists a
cover of size 3, consisting of s3, s4, and s5 (see Fig. 1(b)). (In this case, the sets of this cover
do not overlap. This is called an exact cover. In general, the sets of the cover are allowed to
overlap.)

s3 s4 s5

s1

s6

s2

s3 s4 s5

s1

s6

s2

(a) (b)

Fig. 1: (a) A set system consisting of 12 elements and 6 sets, and (b) an optimum cover consisting
of the three sets {s3, s4, s5}.

Lecture 7 1 Spring 2025

CMSC 451 Dave Mount

Notice that the output of set cover is not a set, but rather a set of sets. If we think of the
sets of S as being indexed by the integers from 1 to m, then we can think of a cover C more
conveniently as a subset of {1, . . . ,m}. This suggests the following definition.

Set Cover Problem: Given a set system Σ = (X,S), where S = {s1, . . . , sm}, compute a
set C ⊆ {1, . . . ,m} of minimum cardinality such that

X =
⋃
i∈C

si

A more general formulation is a weighted variant, in which each set si is associated with a
positive weight wi, which can be thought of as the “cost” of including set si. The problem
is to compute the set cover of minimum total weight. Our simpler version is equivalent to
setting wi = 1 for all i.

Set Cover Approximation: Set Cover is a very useful optimization problem, but it is known to
be NP-hard. We will present a simple greedy heuristic for this problem, and we will show that
this heuristic leads to an approximation. As we shall see, the approximation factor is rather
weak, but there are reasons to believe that significantly better approximations are not easy
to compute. Recall that n = |X|. We will show that the size of the greedy heurisitc exceeds
the size of an optimum cover by a factor of at most lnn, the natural logarithm of n.

It is worth noting that, in a number of practical instances (including the geometric covering
examples mentioned above), the greedy heuristic performs reasonably well. Unfortunately, we
will show that it is possible to construct set systems where greedy’s performance is Ω(log n).

Greedy Set Cover: A simple greedy approach to set cover works by at each stage selecting the
set that covers the greatest number of uncovered elements. The algorithm is presented in the
code block below. The set C contains the indices of the sets of the cover, and the set U stores
the elements of X that are still uncovered. Initially, C is empty and U ← X. We repeatedly
select the set of S that covers the greatest number of elements of U and add it to the cover.

Greedy Set Cover
greedy-Set-Cover(X, S) {

U = X // U stores the uncovered items

C = empty-set // C stores the sets of the cover

while (U is nonempty) {

select s[i] in S that covers the most elements of U

add i to C

remove the elements of s[i] from U

}

return C

}

An example is shown in Fig. 2. Set s1 has the most elements, six, and is added first (see
Fig. 2(a)). Next, s6 has the most uncovered elements, three (see Fig. 2(b)). Finally, s2 has the
most uncovered elements, two (see Fig. 2(c)). Finally, s3 covers the only remaining element
(see Fig. 2(d)). Thus, it would return a set cover of size 4, whereas the optimal set cover has
size 3.

Lecture 7 2 Spring 2025

CMSC 451 Dave Mount

s3 s4 s5

s1

s6

s2

(a) (b)

s3 s4 s5

s6

s2

(c)

s3 s4 s5

s2

(d)

s3 s4 s5

s1 covers 6 s6 covers 3 s2 covers 2 s3 covers 1

Fig. 2: Example of the greedy set-cover heuristic, returning {s1, s6, s2, s3}.

Running time: We will not worry about implementing this algorithm in the most efficient manner.
Recall that n = |X|, and m = |S| (the number of sets). It is possible implement this algorithm
in time O(nm). We will leave this as an exercise, but one way to visualize it is to imagine a
bipartite graph, where the elements X are on one side and the sets S are on the other side.
For each pair s and x where set s contains element x, we add the edge (s, x). From this
perspective, the greedy algorithm repeatedly removes the highest-degree vertex from the S
side, and delete all of its edges.

A bad case for greedy: The problem with the greedy heuristic is that it can be fooled into
picking the wrong set, over and over again. Consider the example shown in Fig. 3 involving
a universe of 32 elements. The optimal set cover consists of the two sets s7 and s8, each of
size 16. Initially all three sets s1, s7, and s8 have 16 elements. If ties are broken in the worst
possible way, the greedy algorithm will first select the set s1. We remove all the covered
elements. Now s2, s7 and s8 all cover eight of the remaining elements. Again, if we choose
poorly, s2 is chosen. The pattern repeats, choosing s3 (covering four of the remainder), s4
(covering two) and finally s5 and s6 (each covering one). Although there are ties for the
greedy choice in this example, it is easy to modify the example so that the greedy choice is
unique.

s5

s6

s7

s8

s4 s3 s2 s1

{s7, s8}Opt:

Greedy: {s1, s2, s3, s4, s5, s6}

Fig. 3: Repeatedly fooling the greedy heuristic.

From the pattern, you can see that we can generalize this to any number of elements that is
a power of 2. While there is a optimal solution with 2 sets, the greedy algorithm will select
roughly lg n sets, where n = |X|. (Recall that “lg” denotes logarithm base 2.) Thus, on this
example the greedy heuristic achieves an approximation factor of roughly (lg n)/2. There

Lecture 7 3 Spring 2025

CMSC 451 Dave Mount

were many cases where ties were broken badly here, but it is possible to redesign the example
such that there are no ties, and yet the algorithm has essentially the same ratio bound.

Greedy’s approximation factor: Next, we will show that this bad case is close to the worst
case. In particular, we’ll show that the number of sets generated by the greedy heuristic
exceeds the optimum number by a factor of at most lnn.

Theorem: Given any set system Σ = (X,S), let G be the output of the greedy heuristic and
let O be an optimum cover. Then |G| ≤ |O| · lnn, where n = |X|.

Before giving the proof, we need one useful technical inequality.

Lemma: For all c > 0, (
1− 1

c

)c

≤ 1

e
.

where e is the base of the natural logarithm.

Proof: We use the fact that for any real z (positive, zero, or negative), 1 + z ≤ ez. (This

follows from the Taylor’s expansion ez = 1 + z + z2

2! +
z3

3! + . . . ≥ 1 + z.) Now, if we

substitute −1/c for z we have (1− 1/c) ≤ e−1/c. By raising both sides to the cth power,
we have the desired result.

We now prove the main theorem.

Proof: We will cheat a bit. Let o denote the size of the optimum set cover, and let g denote
the size of the greedy set cover minus 1. We will show that g ≤ o · lnn. (Note that we
should really show that g+1 ≤ o · lnn, but this is close enough and saves us some messy
details.)

Let’s consider how many new elements we cover with each round of the algorithm. LetXi

denote the subset of X that remains to be cover after the ith iteration of the algorithm,
and let ni = |Xi|. Initially, X0 = X and n0 = n. At the start of the ith iteration, there
are ni−1 elements that remain to be covered.

We know that there is a cover of size o for the entire set X, and therefore there is a
cover of size o for Xi−1. (You might think it should be smaller since we have covered
many elements so far. But there is no guarantee that we have used any of the optimum
sets in doing so.). Since ni−1 = |Xi−1|, by the pigeonhole principal there exists some set
that covers at least ni−1/o elements. Since the greedy algorithm selects the set covering
the largest number of remaining elements, it must select a set that covers at least this
many elements. The number of elements that remain to be covered is at most

ni ≤ ni−1 −
ni−1

o
= ni−1

(
1− 1

o

)
.

Since this applies to every iteration, we see that with each iteration the number of
remaining elements decreases by a factor of at least (1− 1/o). If we repeat this i times,
we have

ni ≤ n0

(
1− 1

o

)i
= n

(
1− 1

o

)i
.

Lecture 7 4 Spring 2025

CMSC 451 Dave Mount

How long can this go on? Since the greedy heuristic ran for g + 1 iterations, we know
that just prior to the last iteration we must have had at least one remaining uncovered
element, and so we have

1 ≤ ng ≤ n

(
1− 1

o

)g
= n

((
1− 1

o

)o)g/o
.

(In the last step, we just rewrote the expression in a manner that makes it easier to
apply the above technical lemma.) By the above lemma, with c = o, we have

1 ≤ n

(
1

e

)g/o

.

Now, if we multiply by eg/o on both sides and take natural logs we find that g satisfies:

eg/o ≤ n ⇒ g

o
≤ lnn ⇒ g ≤ o · lnn,

as desired. Therefore (ignoring the missing “+1” as mentioned above) the greedy set
cover is larger than the optimum set cover by a factor of at most lnn.

Summary: To summarize. In this short lecture we introduced the set-cover problem. (In a later
lecture, we will show that set cover is NP-hard.) We introduced a simple greedy algorithm
for set cover, which works by repeatedly taking the set that covers the greatest number of
uncovered elements. Finally, we presented a proof that the greedy heuristic is within a factor
of lnn of the size of the optimal cover, where n is the number of elements to be covered.

While greedy often works well in practice, there is no hope in trying to improve this result. It
is known that (under fairly well-accepted assumptions about NP-hardness) it is not possible
to approximate set cover to any factor smaller than (1 − o(1)) · lnn. (The factor 1 − o(1)
means that the multiplicative factor is smaller than but arbitrarily close to 1.)

Lecture 7 5 Spring 2025

