
CMSC 451 Dave Mount

CMSC 451: Lecture 6
k-Center Clustering and Gonzalez’s Algorithm

Greedy Approximation for NP-Hard Problems: One of the common applications of greedy
algorithms is for producing approximation solutions to NP-hard problems.

As we shall see later this semester, NP-hard optimization problems represent very challenging
computational problems in the sense that there is no known exact solution that has worst-case
polynomial-time running time. Given an NP-hard problem, there are no ideal algorithmic
solutions. One has to compromise between optimality or running time. Nonetheless, there
are are number of examples of NP-hard problems where simple greedy heuristics produce
solutions that are not far from optimal.

Clustering and Center-Based Clustering: Clustering is a widely studied problem with appli-
cations in statistics, pattern recognition, and machine learning. In a nutshell, it involves
partition a large set of objects, called points, into a small number of subsets whose members
are all mutually close to one another. In machine learning, clustering is often performed in
high-dimensional spaces. Each data object is associated with a vector designating its proper-
ties or features. This is a numeric vector whose length may range from tens up to thousands
that describes the salient properties of this object. Then clustering is performed to group
similar objects together.

In this geometric view of clustering, we think of the data set as a set P of n points in a
multi-dimensional space (see Fig. 1(a)). The output of the clustering algorithm is a partition
of the point set into subsets, called clusters, denoted {C1, . . . , Ck} (see Fig. 1(b)). In center-
based clustering, the output is a set of cluster center points, C = {c1, . . . , ck}, and the clusters
themselves are implicitly defined by the closest center (see Fig. 1(c)). In particular, a point
lies in the ith cluster if its closest cluster center is ci. Let N(ci) denote this neighborhood of
nearest points. Given a set of k centers, we can assign points to their closest center in O(nk)
time.

(a) (b) (c)

Point set Clustering Cluster centers

C1

C2

C3

C4

C5
C6

C7

C8

C9

c1

c2

c3

c4

c5

c6

c7
c8

c9

P

Fig. 1: Center-based geometry clustering.

Depending on the method being employed, it may be required that the center points are drawn
from P itself, or they may just be arbitrary points in space. (Points used in an optimization
problem that are not drawn from the set are sometimes called Steiner points.)

Lecture 6 1 Spring 2025

CMSC 451 Dave Mount

Three Center-Based Clusterings: There are a number of ways to define center-based cluster-
ings. Before getting into our main topic, called the k-center problem, we will contrast three
alternatives. In all three cases, we are told the desired number of clusters. (Determining the
desired number of clusters is a tricky question, which we will not address here.)

k-Median: Compute the k center points to minimize the sum of Euclidean distances to the
nearest cluster center.

k-Means: Compute the k center points to minimize the sum of squared Euclidean distances
to the nearest cluster center.

k-Center: Compute the k center points to minimize the maximum Euclidean distance to the
nearest cluster center.

Which of these is best? It really depends on your application. In order to better understand
the differences between these criteria, it is illustrative to consider the single-cluster version of
all three.

1-Median: The 1-median point is the single point that minimizes the sum of distances. In
1-dimensional space, this is realized by the median1 of the point set (see Fig. 1(a)).

(a) (b)

1-median = median 1-median

1-means

1-center

1-means = mean

1-center = center

Fig. 2: 1-median, 1-means, and 1-center in 1- and 2-dimensional space.

In higher dimensions, there is no simple way to describe this point. The problem of
computing the point in multi-dimensional space that minimizes the sum of Euclidean
distances (see Fig. 1(b)). Computing this point is called the Fermat-Weber problem
(named in honor of the famous 17th-century French mathematician, Pierre de Fermat,
and the early 20th-century German economist Alfred Weber). There is no known exact
algorithm, and best solutions only can approximate its coordinates.

1-Means: In 1-dimensional space, the 1-means problem is realized by the mean of the set.
In higher dimensions, this is the centroid of the set. This can be easily computed by
taking the mean coordinate along each of the coordinate axes. One of the reasons for
the popularity of k-means is that the cluster centers are very easy to compute in O(n)
time.

1This can be proved by a simple variational argument. Suppose the point is not at the median. There are more
points on one side, say the right, than on the other. By moving the point some distance ∆x to the right, more
distances on the right decrease by ∆x to compensate for the distances on the left that increase by ∆x.

Lecture 6 2 Spring 2025

CMSC 451 Dave Mount

There is a famous heuristic for the k-means problem, called Lloyd’s algorithm. It starts
with an initial set of centers, and then repeatedly moves each center to the centroid of its
cluster, and then recomputes the clusters (based on changes in the nearest neighbors).
It converges to a local minimum, but this may not be the global minimum.

1-Center: The solution to the 1-center problem is the center of the minimum radius ball that
contains the points. In the 1-dimensional case, this is midway between the minimum
and maximum. In higher dimensions, this is the center of the smallest enclosing ball for
the point set. It is not obvious how to compute this ball. There is an amazingly simple
O(n)-time randomized algorithm. The algorithm was developed by many researchers
over time, but the simplest variant was presented and analyzed by the German computer-
scientist Raimund Seidel.)

The k-Center Problem: For the rest of the lecture, we will focus on the k-center problem. Let P
be a set of n points in some metric space. We are given a distance function, δ, which computes
the distance between any two points p, q ∈ P . We assume that δ is a metric, meaning that it
satisfies the following properties for any p, q, r ∈ P :

Positivity: δ(p, q) ≥ 0 and δ(p, q) = 0 if and only if p = q.

Symmetry: δ(p, q) = δ(q, p)

Triangle inequality: δ(p, r) ≤ δ(p, q) + δ(q, r)

For the rest of the lecture, we can think of δ as the Euclidean distance, but the algorithm
that we will present can be applied to any metric on P . Here is a formal problem statement.

k-center problem: Given a set P of n points in a metric space and an integer k ≤ n, find
a set C ⊆ P of k points in order to minimize the maximum distance of any point of P
to its closest center in C.

We can state the problem in a more “mathy” form in terms of an objective function

∆P (C) = max
p∈P

min
c∈C

δ(p, c).

This just computes the maximum distance of any point p of P to its closest center in C.
Then, the k-center problem is the optimization problem of computing the subset of k-centers
from P that minimizes this function, that is,

min
C⊆P
|C|=k

∆P (C).

As mentioned above, we can view the k-center problem as finding the smallest radius r such
that it is possible cover P using k balls of radius r, each centered at some point of P . The
minimum radius r is just the optimum value of ∆P (C) a covering problem by balls, and the
points of C are the centers of these balls.

Given a point x in space and radius r, define the ball B(x, r) to be the (closed) ball of radius r
centered at x. Given any solution C to the k-center problem, let ∆(C) denote the maximum
distance from any point of P to its closest center. If we now place balls of radius ∆(C) about

Lecture 6 3 Spring 2025

CMSC 451 Dave Mount

each point in C, it is easy to see that every point of P lies within the union of these balls. By
definition of ∆(C), one of the points of P will lie on the boundary of one of these balls (for
otherwise we could make ∆(C) smaller). The neighborhood of each cluster will lie within its
associated ball (see Fig. 3(b)).

c1

c2

c4
c3

c6

c5

k = 6Input:

(a) (b)

∆(C)

Fig. 3: The k-center problem (k = 6) in the Euclidean plane.

Given this perspective, we can see that the k-center problem is equivalent to the following
problem:

k-center problem (equivalent form): Given a set P of n points in space and an integer
k ≤ n, find the minimum radius ∆ and a set of balls of radius ∆ centered at k points of
P such that P lies within the union of these balls.

Gonzalez’s Algorithm: Like many clustering problems, the k-center problem is known to be
NP-hard, and so we will not be able to solve it exactly. (We will show this later this semester
for a graph-based variant of the k-center problem.) Instead, we will present simple greedy
algorithm, due to Teofilo Gonzalez, an algorithms researcher from UCSB. It does not produce
the optimum value of ∆, but the result is at most twice as large as the optimum value of ∆.

Let us start with a couple of useful definitions. Recall that P is our point set, and consider
any set C = {c1, . . . , ck} of cluster centers. (Since P will be fixed, we’ll omit explicit references
to it in our notation.) For any ci ∈ C, recall that N(ci) are the points of its cluster. Define
the bottleneck distance of ci to be the distance to its farthest point in N(ci), that is,

∆(ci) = max
p∈N(ci)

δ(p, ci).

and the overall bottleneck distance is

∆(C) = max
1≤i≤k

∆(ci).

For example, if we think of the cluster centers as the locations of Starbucks (or your favorite
retailer), then each customer (point in P) goes to its closest Starbucks, and N(ci) are the
customers that go to the ith Starbucks location. ∆(ci) is the maximum distance that any of
these customers needs to travel. ∆(C) is the maximum distance that anyone in P needs to
travel to their nearest Starbucks.

Lecture 6 4 Spring 2025

CMSC 451 Dave Mount

We will build up the greedy centers, denotedG = {g1, g2, . . .} as follows. The greedy algorithm
begins by selecting any point of P to be the initial center g1. (There may be better ways to
select the point in practice, but it won’t affect the worst-case analysis.) We then repeat the
following process until we have k centers. For 0 ≤ i < k, let Gi = {g1, . . . , gi} denote the
current set of greedy centers. Recall that ∆(Gi) is the maximum distance of any point of P
from its nearest center. Let p be the point achieving this distance. Intuitively, p is the most
dissatisfied customer, since he/she has to drive the farthest to get to the nearest Starbucks.
The greediest way to satisfy p is to put the next center directly at p. (Thus plopping the next
Starbucks right on top of p’s house. Are you satisfied now?) In other words, set

gi+1 ← p and Gi+1 ← Gi ∪ {gi+1}.

The pseudocode is presented in the code block below. The value d[p] denotes the distance
from p to its closest center. (We make one simplification, by starting with G being empty.
When we select the first center, all the points of P have infinite distances, so the initial choice
is arbitrary.)

Gonzalez’s Algorithm for k-center
gonzalez(P, k) { // Gonzalez’s algorithm for k-center on P

G = empty-set

for each (p in P) // initialize distances

d[p] = +infinity

for (i = 1 to k) {

p = point of P that maximizes d[p]

add p to G // p is the next cluster center

for each (q in P) { // update distances to nearest center

d[q] = min(d[q], dist(p, q))

}

}

return (G, Delta) // final centers and max distance

}

It is easy to see that the algorithm’s running time is O(kn). One step of the algorithm is
illustrated in Fig. 4. Assuming that we have three centers G = {g1, g2, g3}, let g4 be the point
that is farthest from its nearest center (g1 in this case). In each step we create a center at g4,
so now G = {g1, . . . , g4}. In anticipation of the next step, we find the point that maximizes
the distance to its closest center (g5 in this case), and if the algorithm continues, it will be
the location of the next center.

Approximation Bound: Now, let us show that this algorithm is at most a factor of two from
the optimum. Given a point set P , let G = {g1, . . . , gk} denote the set of centers computed
by the greedy algorithm, and let ∆P (G) denote its bottleneck distance. Let O = {o1, . . . , ok}
denote the optimum set of centers, that is the set of k centers such that ∆P (O) is the smallest
possible. Since P is fixed throughout, we’ll drop the subscript.

Theorem: For a point set P , let G denote the output of Gonzalez’s algorithm and O denote
the optimum k-center solution. Then ∆(G) ≤ 2∆(O).

Lecture 6 5 Spring 2025

CMSC 451 Dave Mount

g1

g2
g3

g1

g2
g3

g4g4

g5

i = 3 i = 4
∆3

∆4

Fig. 4: Greedy approximation to k-center (from stage 3 to 4). (Not necessarily accurate to the
algorithm’s behavior.)

How can we hope to do this, since (assuming you cannot solve NP-hard problems), you
cannot know what ∆(O) even is! Our approach will be to define estimate, denoted ∆min (see
Claim 3 below). We will show that this estimate is a lower bound on the optimum, that is,
∆min ≤ ∆(O). We will also show that 2∆min provides an upper bound on greedy, that is,
∆(G) ≤ 2∆min. Combining these yields

∆(G) ≤ 2∆min ≤ 2∆(O),

which will imply that greedy is a 2-factor approximation to the optimum. Let’s carry out
this plan.

The analysis is based on the following three claims, each of which is quite straightforward to
prove. Define Gi to be the set of greedy centers after the ith execution of the algorithm, and
let ∆i = ∆(Gi) denote its overall bottleneck distance (the fartest any point is from its closest
center in Gi). Thus, ∆(G) = ∆k.

The greedy algorithm stops with gk, but for the sake of the analysis it is convenient to consider
the next center to be added if we ran it for one more iteration. That is, define gk+1 to be the
point of P that is maximizes the distance to its closest center in Gk. This distance is ∆(G).
Also, define Gk+1 = {g1, . . . , gk+1}.

Claim 1: For 1 ≤ i ≤ k + 1, ∆i+1 ≤ ∆i. That is, the sequence of bottleneck distances is
monotonically nonincreasing. (In Fig. 4 this is represented by the fact that the radii of
the covering disks decrease with each stage.)

Proof: Whenever we add a new center, the distance to each point’s closest center will either
be the same or will decrease. Therefore, the maximum of such a set can never increase.

Claim 2: For 1 ≤ i ≤ k + 1, every pair of greedy centers in Gi is separated by a distance of
at least ∆i−1.

Proof: Consider the ith stage. By the induction hypothesis, the first i − 1 centers are
separated from each other by distance ∆i−2 ≥ ∆i−1. The ith center is, by definition, at
distance ∆i−1 from its closest center, and therefore it is at distance at least ∆i−1 from
all the other centers.

Since ∆(G) = ∆k, we have:

Lecture 6 6 Spring 2025

CMSC 451 Dave Mount

Corollary: Every pair of greedy centers in Gk+1 is separated by a distance of at least ∆(G).

Claim 3: Let ∆min = ∆(G)/2. Then for any set C of k cluster centers, ∆(C) ≥ ∆min.

Proof: By definition of ∆(C),every point of P lies within distance ∆(C) of some point of C
(see Fig. 5(a)). Since Gk+1 ⊆ P , this is true for Gk+1 as well. Since |Gk+1| = k + 1,
and C has only k clusters, by the pigeonhole principle, there exists at least two centers
g, g′ ∈ Gk+1 that are in the same neighborhood of some center c ∈ C (see Fig. 5(b) and
(c)).

g1

g2

g3

g4

g5C G

∆(C)

C

∆(C)

g

g′

(a) (b) (c)

c

≥ ∆(G)

c

Fig. 5: Proof of Claim 3. (Not necessarily accurate to the algorithm’s behavior.)

This implies that both δ(g, c) and δ(g′, c) are less than or equal to ∆(c), which is less
than or equal to ∆(C). Since g, g′ ∈ Gk+1, by the corollary to Claim 2, δ(g, g′) ≥ ∆(G).
Combining these observations with basic properties of metric spaces, we have

∆(G) ≤ δ(g, g′) ≤ δ(g, c) + δ(c, g′) (by triangle inequality)

≤ δ(g, c) + δ(g′, c) (by distance symmetry)

≤ ∆(c) + ∆(c) ≤ ∆(C) + ∆(C) = 2∆(C).

Rewriting this, we have ∆(C) ≥ ∆(G)/2 = ∆min, as desired.

Since Claim 3 applies to any set of k clusters, it applies to the optimum, O. We conclude
that ∆(O) ≥ ∆min. By definition, ∆min = ∆(G)/2, and so ∆(G) ≤ 2∆(O), completing the
analysis.

You might wonder whether this bound is tight. We will leave it as an exercise to prove that
there is a input such that (if you are unlucky about how you choose the first point) the greedy
algorithm returns a value that is arbitrarily close to twice that of the optimum.

Lecture 6 7 Spring 2025

