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CMSC 451: Lecture 5
Greedy Algorithms for Scheduling

Greedy Algorithms: Before discussing greedy algorithms in this lecture, let us explore the gen-
eral concept of greedy optimization algorithms. In an optimization problem, we are given an
input and asked to compute a discrete structure, subject to various constraints, in a manner
that either minimizes cost or maximizes some objective function. Such problems are extremely
common in computation. Given an optimization problem, a fundamental question is whether
it can be solved efficiently (as opposed to a brute-force enumeration of all possible solutions).
If so, what approach should be used?

In most optimization algorithms the final structure is based on a series of selections. A simple
design technique for optimization problems is based on a greedy approach, which builds up a
solution by repeatedly selecting the best alternative in each step. (In particular, each choice
is made without regard as to how this choice may interfere with later choices, and once a
choice is made, it is never revoked.) When applicable, this method can lead to very simple
and efficient algorithms. Even if a greedy algorithm does not yield the optimal solution, it
sometimes produces a good approximation or a starting point for more sophisticated search
algorithms.

Interval Scheduling: In this lecture, we discuss a number of problems motivated by applications
in resource scheduling. In all instances we have one or more resources and a collection of
requests to use these resources. We want to schedule all or some of these requests, subject
to the limitations of our resources. As an example, suppose you work for the Parks and
Recreation division of your community, and people want to reserve time at picnic tables at a
local park. You want to write an algorithm to assign picnic tables to requests.

Our first problem is called interval scheduling. We are given a set R = {r1, . . . , rn} of n
activity requests that are to be scheduled to use some resource. Each request ri is associated
with a given start time si and a given finish time fi. For example, request indicates the desire
to use the one picnic table in your park. (You work for a really cheap city!) Given that two
groups cannot use the same picnic table at the same time, the objective is to grant as many
of the requests as possible, but only one group can use the picnic area at a time.

We say that two requests ri and rj conflict if their start-finish intervals overlap, that is,

[si, fi] ∩ [sj , fj ] ̸= ∅.

(Note that by this criteria, we do not allow finish time of one request to overlap the start
time of another one, but this is easily remedied in practice by shaving a tiny time period off
the finish times.) Here is a formal problem definition.

Interval scheduling problem: Given a set R of n requests with start-finish times [si, fi]
for 1 ≤ i ≤ n, determine a subset of R of maximum cardinality consisting of requests
that are mutually non-conflicting.

An example of an input and a possible optimal solution is shown in Fig. 1 (another optimal
solution is {5, 6, 8}). Notice that goal here is to maximize the number of requests that are
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Fig. 1: An input and possible solution to the interval scheduling problem.

scheduled. There are many other alternatives, such as maximizing utilization, the total time
that the resource is being used.

What is the best way to greedily schedule the largest number of requests? Here are a number
of seemingly reasonable approaches that do not guarantee an optimal solution:

Earliest Activity First: Repeatedly select the request with the earliest start time, provided
that it does not overlap any of the previously scheduled requests.

Shortest Activity First: Repeatedly select the request with the smallest duration (fi−si),
provided that it does not conflict with any previously scheduled requests.

Lowest Conflict Activity First: Repeatedly select the request that conflicts with the small-
est number of remaining requests, provided that it does not conflict with of the previously
scheduled requests. (Note that once an request is selected, all the conflicting requests
can be effectively deleted, and this affects the conflict counts for the remaining requests.)

As an exercise, show (by producing a counterexample) that each of the above strategies may
fail to generate an optimal solution for a given set of requests.

Earliest Finish First: If at first you don’t succeed, keep trying. Here, finally, is a greedy strategy
that does work. Intuitively, whenever we start a request, we want it to end as soon as possible
to allow other requests to begin. This suggests that, among the non-conflicting requests, we
repeatedly select the request that finishes first. Call this strategy Earliest Finish First (EFF).
The pseudo-code is presented in the code-block below. It returns the set S of scheduled
requests.

An example is illustrated in Fig. 2, where the requests are numbered in finish-order. Activity 1
is scheduled first. It conflicts with requests 2 and 3. Then request 4 is scheduled. It conflicts
with requests 5 and 6. Finally, request 7 is scheduled, and it interferes with the remaining
requests. The final output is {1, 4, 7}. Note that this is not the only optimal schedule. {2, 4, 7}
is also optimal.

The algorithm’s correctness will be shown below. The running time is dominated by the
O(n log n) time needed to sort the jobs by their finish times. After sorting, the remaining
steps can be performed in O(n) time.
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Interval Scheduling by Earliest Finish First
greedy-intveral-schedule(s, f) { // schedule requests using earliest-finish-first

sort requests by increasing order of finish times

S = empty // S holds the sequence of scheduled requests

prevFinish = -infinity // finish time of previous request

for (i = 1 to n) {

if (s[i] > prevFinish) { // request i doesn’t conflict with previous?

append request i to S // ...add it to the schedule

prevFinish = f[i] // ...and update the previous finish time

}

}

return S

}
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Fig. 2: An example of the greedy algorithm for interval scheduling. The final schedule is {1, 4, 7}.

Correctness: Let us consider the algorithm’s correctness. First, observe that because we only
schedule a request if it finishes after the previous one, the final schedule has no conflicting
requests and hence is feasible.

To establish optimality, we use a common approach for greedy algorithms. Suppose towards
a contradiction that the final schedule is not optimal. Then there must be some first decision
where the algorithm differs from the optimal solution. We show that optimal solution can
be modified to match the greedy solution at this decision point, without affecting its global
quality. By applying this argument inductively, it follows that the greedy solution is as good
as any optimal solution, thus it is optimal.

Claim: The EFF strategy yields an optimal solution to interval scheduling.

Proof: Let O = ⟨x1, . . . , xk⟩ be the requests of an optimal solution listed in increasing order
of finish time. (There may be many such solutions, and we may take O to be any of
them.) Let G = ⟨g1, . . . , gk′⟩ be the requests of the EFF solution similarly sorted. If
G = O, then we are done. Otherwise, observe that since O is optimal, it must contain
at least as many requests as G. Hence, there must be a first index j, 1 ≤ j ≤ k′, where
these two schedules differ. That is, we have:

O = ⟨x1, . . . , xj−1, xj , . . .⟩
G = ⟨x1, . . . , xj−1, gj , . . .⟩,
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where gj ̸= xj .

The greedy algorithm repeatedly selects the request with the earliest finish time that
does not conflict with any earlier request. Thus, we know that gj does not conflict with
any earlier request, and it finishes no later than xj finishes (see Fig. 3).

x1 x2 xj−1 xj xj+1 xj+2O :

x1 x2 xj−1 gj gj+1 gj+2G :

x1 x2 xj−1 xj+1 xj+2O′ : gj

Fig. 3: Proof of optimality for the greedy schedule.

Consider the modified “greedier” schedule O′ that results by replacing xj with gj in the
schedule O (see Fig. 3). That is, O′ = ⟨x1, . . . , xj−1, gj , xj+1, . . . , xk⟩. Clearly, O′ is a
valid schedule, because gj finishes no later than xj , and therefore it cannot create any
new conflicts. This new schedule has the same number of requests as O, and so it is at
least as good with respect to our optimization criterion.

By repeating this process, we will eventually convert O into G without ever decreasing
the number of requests. Therefore, G is optimal.

Interval Partitioning: One shortcoming with interval scheduling is that some requests are not
satisfied. Next, let us consider a variant where all the requests can be satisfied. Instead of
a single resource, we have an infinite number of possible exclusive resources to use, and we
want to schedule all the requests using the smallest number resources. (The Department of
Parks and Recreation can truck in as many picnic tables as it likes, but there is a cost for
each table.)

As before, we are given a collection R = {r1, . . . , rn} of n requests, each with a start and
finish time [si, fi]. The objective is to find the smallest number d, such that it is possible
to partition R into d disjoint subsets R1, . . . , Rd, such that the requests of Rj are mutually
nonconflicting, for each j, 1 ≤ j ≤ d.

We can view this as a coloring problem. In particular, we want to assign “colors” to the
requests such that two overlapping requests must have different colors. (In our example, each
picnic table has its own color. Two overlapping requests must be assigned to different tables,
that is, different colors.) If this is done using at most d colors, the result is called a d-coloring
of the requests. Scheduling all the requests to the minimum number of resources is equivalent
to finding the smallest d, such that it is possible to d-color the activity requests.

We refer to the subset of requests that share the same color as a color class. The requests
of each color class are assigned to the same resource. (For example, in Fig. 4(a) we give an
example with n = 12 requests and in (b) show a 3-coloring. Thus, the six requests labeled
1 can be scheduled in one picnic table, the three requests labeled 2 can be put in a second
table, and the three requests labeled 3 can be put in a third table.)

In general, coloring problems are hard to solve efficiently (in the sense of being NP-hard).
However, due to the simple nature of intervals, it is possible to solve the interval-partitioning
problem quite efficiently by a simple greedy approach. First, we sort the requests in increasing
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Fig. 4: Interval partitioning: (a) the requests R, (b) a possible 3-coloring, and (c) depthR(t).

order of start times. Whenever we encounter a new request, we assign it to the smallest color
(possibly a new color) such that this color has not been assigned to any overlapping request.
The algorithm is presented in the following code block.

Greedy Interval Partitioning
greedy-interval-partition(s, f) { // interval partition schedule

sort requests by increasing start times

for (i = 1 to n) do { // classify the ith request

X = emptyset // X stores excluded colors for request i

for (j = 1 to i-1) do {

if ([s[j],f[j]] overlaps [s[i],f[i]]) add color[j] to X

}

Let c be the smallest color NOT in X

color[i] = c

}

return color[1...n]

}

The solution given in Fig. 4(b) comes about by running the above algorithm. With it’s two
nested loops, it is easy to see that the algorithm’s running time is O(n2). If we relax the
requirement that the color be the smallest available color (instead allowing any available
color), it is possible to reduce this to O(n log n) time with a bit of added cleverness.1

Correctness: Let us now establish the correctness of the greedy interval partitioning algorithm.
We first observe that the algorithm generates a feasible output, since it takes care to never
assign the same color to two overlapping requests.

To establish that the algorithm is optimal, we will employ another widely used technique
in greedy algorithm analysis. We will identify a statistic based on the given instance. We

1Rather than have the for-loop iterate through just the start times, sort both the start times and the finish times
into one large list of size 2n. Each entry in this sorted lists stores a record consisting of the type of entry (start or
finish), the index of the request (a number 1 ≤ i ≤ n), and the time of the request (either si or fi). The algorithm
visits each time instance from left to right, and while doing this, it maintains a stack containing the collection of
available colors. It is not hard to show that each of the 2n entries can be processed in O(1) time. We leave the
implementation details as an exercise. Given O(n logn) time to sort the start and finish times, the total processing
time is 2n ·O(1) = O(n). Thus, the overall running time is O(n logn).
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will show (a) that this statistic is a lower bound on the size of any feasible solution, and (b)
that our algorithm’s output is upper bounded by this statistic. It follows that our algorithm’s
output is optimal.

In our case, this statistic, called depth, is defined as follows. Given a set R of time intervals,
and letting t denote any time instant, define depthR(t) to be the number of intervals of R that
contain t (see Fig. 4(c)). Next, define depth(R) to be the maximum depth over all possible
values of t:

depth(R) = max
t≥0

depthR(t).

Since the requests that contribute to depthR(t) conflict with one another, clearly we need at
least this many resources to schedule these requests. Therefore, we have the following lower
bound on the number of colors.

Claim: Given any set R of intervals, for any d-coloring, we have d ≥ depth(R).

Next, we show that our algorithm achieves this as an upper bound.

Claim: Given any set R of intervals, the greedy partitioning algorithm generates a d-coloring,
where d ≤ depth(R).

Proof: It will simplify the proof to assume that all start and finish times are distinct. (We
can always perturb them infinitesimally to guarantee this.) We will prove a stronger
result, namely that at any time t, the number of colors in use at time t is at most
depthR(t). The claim follows by taking the maximum over all times t.

Assume that requests are sorted by start times. Suppose towards a contradiction that
there is some time t such that greedy uses more than depthR(t) colors. The first such
time must be the start time si of some request. Consider the time t immediately prior
to si. Let d denote the number of colors used by greedy at time t. Since si is the
first violation, we have d ≤ depthR(t). When si is seen, the depth increases by +1,
so depthR(si) = depthR(t) + 1. Since the excluded set X used in the algorithm has d
elements, there is an unused color among the first d + 1 colors, which implies that the
algorithm uses at most d + 1 colors at time si. Thus, we are using at most d + 1 ≤
depthR(si) colors, which contradicts the hypothesis that more than depthR(si) colors
were needed at this point.

The above algorithm may seem utterly obvious. But, to see whether you really understand it,
consider the following question. If the algorithm was identical, but the intervals were sorted
according to some different criterion (not start times), would the result still be feasible? still
be optimal?

Scheduling to Minimize Lateness: Finally, let us discuss a problem of scheduling a set of n
tasks T where each task is associated with an execution time ti and a deadline di. The
objective is to schedule the tasks, no two overlapping in time, such that they are all completed
before their deadline. If this is not possible, define the lateness of the ith task to be amount
by which its finish time exceeds its deadline. The objective is to minimize the maximum
lateness over all the tasks. (As an exmple, consider the assignments given to you from your
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various classes. You know how long each assignment takes, and you know when the deadline
is. You lose points whenever assignments are late.)

More formally, given the execution times ti and deadlines di, the output is a set of n starting
times, S = {s1, . . . , sn}, for the various tasks. Define the the finish time of the ith task to
be fi = si + ti (its start time plus its execution time). The intervals [si, fi] must be pairwise
disjoint. The lateness of the ith task is the amount of time by which it exceeds its deadline,
that is, ℓi = max(0, fi − di). The maximum lateness of S is defined to be

L(S) = max
1≤i≤n

max(0, fi − di) = max
1≤i≤n

ℓi.

The overall objective is to compute S that minimizes L(S).

Consider the instance shown in Fig. 5(a), where the execution time is shown by the length of
the rectangle and the deadline is indicated by an arrow pointing to a vertical line segment. A
suboptimal solution is shown in Fig. 5(b), and the optimal solution is shown in Fig. 5(c). The
width of each red shaded region indicates the amount by which the task exceeds its allowed
deadline. The longest such region yields the maximum lateness.

Input:
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Fig. 5: Scheduling to minimize lateness.

Let us present a greedy algorithm for computing a schedule that minimizes maximum lateness.
As before, we need to find a quantity upon which to base our greedy choices. Here are some
ideas that do not guarantee an optimal solution.

Smallest duration first: Sort tasks by increasing order of execution times ti and schedule
them in this order.

Smallest slack-time first: Define the slack time of task xi as di−ti. This statistic indicates
how long we can safely wait before starting a task. Schedule the tasks in increasing order
of slack-time.

As before, see if you can generate a counterexample showing that each of the above strategies
may fail to give the optimal solution.

Earliest Deadline First: So what is the right solution? The best strategy turns out to find the
task that needs to finish first and get it out of the way. Define the Earliest Deadline First
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(EDF) strategy work by sorting the tasks by their deadline, and then schedule them in this
order. (This is counterintuitive, because it completely ignores part of the input, namely the
running times.) Nonetheless, we will show that this is the best possible. The pseudo-code is
presented in the following code block.

Greedy Schedule for Minimizing Lateness
greedy-lateness-schedule(t, d) { // schedule to minimize lateness

sort tasks by increasing deadline (d[1] <= ... <= d[n])

prevFinish = 0 // f is the finish time of previous task

for (i = 1 to n) do {

assign task i to start at s[i] = prevFinish // start next task

prevFinish = f[i] = s[i] + t[i] // its finish time

lateness[i] = max(0, f[i] - d[i]) // its lateness

}

return array s // return array of start times

}

The solution shown in Fig. 5(c) is the result of this algorithm. Observe that the algorithm’s
running time is O(n log n), which is dominated by the time to sort the tasks by their deadline.
After this, the algorithm runs in O(n) time.

Correctness: It is easy to see that this algorithm produces a valid schedule, since we never start a
new job until the previous job has been completed. We will show that this greedy algorithm
produces an optimal schedule, that is, one that minimizes the maximum lateness. As with
the interval scheduling problem, our approach will be to show that is it possible to “morph”
any optimal schedule to look like our greedy schedule. In the morphing process, we will show
that schedule remains valid, and the maximum lateness can never increase, it can only remain
the same or decrease.

Claim: The EDF scheduling algorithm yields an optimal schedule for maximum lateness.

Proof: To begin, we observe that our algorithm has no idle time in the sense that the
resource never sits idle during the running of the algorithm. It is easy to see that by
moving tasks up to fill in any idle times, we can only reduce lateness. Henceforth, let us
consider schedules that are “idle-free.” Let G be the schedule produced by the greedy
algorithm, and let O be any optimal idle-free schedule. If G = O, then greedy is optimal,
and we are done.

Otherwise, O must contain at least one inversion, that is, at least one pair of tasks
that have not been scheduled in increasing order of deadline. Let us consider the first
instance of such an inversion. That is, let xi and xj be the first two consecutive tasks
in the schedule O such that dj < di. We have:

(a) The schedules O and G are identical up to these two tasks

(b) dj < di (and therefore xj is scheduled before xi in schedule G)

(c) xi is scheduled before xj in schedule O

We will show that by swapping xi and xj in O, the maximum lateness cannot increase.
The reason that swapping xi and xj in O does not increase lateness can be seen intuitively
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Fig. 6: Optimality of the greedy scheduling algorithm for minimizing lateness.

from Fig. 6. The lateness is reflected in the length of the horizontal arrowed line segments
in the figure. It is evident that the worst lateness involves xj in schedule O (labeled ℓOj ).
Unfortunately, a picture is not a formal argument. So, let us see if we put this intuition
on a solid foundation.

First, let us define some notation. The lateness of task i in schedule O will be denoted by
ℓOi and the lateness of task j in O will be denoted by ℓOj . Similarly, let ℓGi and ℓGj denote
the respective latenesses of tasks i and j in schedule G. Because the two schedules are
identical up to these two tasks, and because there is no slack time in either, the first
of the two tasks starts at the same time in both schedules. Let t denote this time (see
Fig. 6). In schedule O, task i finishes at time t+ ti and (because it needs to wait for task
i to finish) task j finishes as time t+ (ti + tj). The lateness of each of these tasks is the
maximum of 0 and the difference between the finish time and the deadline. Therefore,
we have

ℓOi = max(0, t+ ti − di) and ℓOj = max(0, t+ (ti + tj)− dj).

Applying a similar analysis to G, we can define the latenesses of tasks i and j in G as

ℓGi = max(0, t+ (ti + tj)− di) and ℓGj = max(0, t+ tj − dj).

The “max” will be a pain to carry around, so to simplify our formulas we will exclude
reference to it. (You are encouraged to work through the proof with the full and proper
definitions.)

Given the individual latenesses, we can define the maximum lateness contribution from
these two tasks for each schedule as

LO = max(ℓOi , ℓ
O
j ) and LG = max(ℓGi , ℓ

G
j ).

Our objective is to show that by swapping these two tasks, we do not increase the overall
lateness. Since this in the only change, it suffices to show that LG ≤ LO. To prove this,
first observe that, ti and tj are nonnegative and dj < di (and therefore −dj > −di).
Recalling that we are dropping the “max”, we have

ℓOj = t+ (ti + tj)− dj > t+ ti − di = ℓOi .

Therefore, LO = max(ℓOi , ℓ
O
j ) = ℓOj . Since LG = max(ℓGi , ℓ

G
j ), in order to show that

LG ≤ LO, it suffices to show that ℓGi ≤ LO and ℓGj ≤ LO. By definition we have

ℓGi = t+ (ti + tj)− di < t+ (ti + tj)− dj = ℓOj = LO,
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and
ℓGj = t+ tj − dj ≤ t+ (ti + tj)− dj = ℓOj = LO.

Therefore, we have LG = max(ℓGi , ℓ
G
j ) ≤ LO, as desired. In conclusion, we have the

following.
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