
CMSC 451 Dave Mount

CMSC 451: Lecture 3
Cycles and Strong Components

Directed Acyclic Graphs: A directed acyclic graph, or DAG, is a directed graph that has no
cycles (see Fig. 1). DAGs arise in many applications where there are precedence or ordering
constraints. For example, if there are a series of tasks to be performed, and certain tasks
must precede other tasks (e.g., in construction you have to build the walls before you install
the windows). In general a precedence constraint graph is a DAG in which vertices are tasks
and the edge (u, v) means that task u must be completed before task v begins.

Fig. 1: Directed acyclic graph (DAG).

It is easy to see that every DAG must have at least one vertex with no incoming edges, and
at least one vertex with no outgoing edges. A vertex with no incoming edges (only outgoing)
is called a source and a vertex with no outgoing edges (only incoming) is called a sink.

Acylicity Testing: Let us consider the problem of determining whether a digraph is acyclic. We
are given a directed graph G = (V,E), and we with to determine whether G contains a cycle.
If so, G is not a DAG.

We will present a simple algorithm based on DFS. Recall that in addition to tree edges, a
DFS forest contains three other types of edges, back edges (which go to a vertex’s ancestor),
forward edges (which go to a vertex’s descendant), and cross edges (everything else). Observe
that if the DFS forest of G contains at least one back edge, then G has a cycle. This is easy
to see. If (u, v) is a back edge, then there is a path in the tree from the ancestor v to the
descendant u, and the back edge from u to v completes the cycle. The following lemma shows
that this condition is not only sufficient, but necessary.

Claim: If a digraph G has a cycle, then any DFS forest of G (i.e., no matter what order the
vertices are visited) has a back edge.

Proof: The proof is based on a very simple observation about the various edge types and
finish times. Recall from the Parenthesis Lemma (from the previous lecture) that if u is
an ancestor of v then we have [d[v], f [v]] ⊂ [d[u], f [u]]. It follows that if (u, v) is a tree
edge or forward edge then f [u] > f [v]. Also, observe that (u, v) is a cross edge, it must
be u was discovered after v was finished (for otherwise, u would have made a DFSvisit
call on v, implying that this would be a tree edge). Therefore d[u] > f [v]. Since a vertex
cannot finish until after it was discovered, we have f [u] > f [v].

Lecture 3 1 Spring 2025

CMSC 451 Dave Mount

In summary, for all these three edge types (tree, forward, and cross), the finish time of
the origin is strictly greater than the finish time of the destination. It follows directly
that it is impossible to complete a cycle from any combination of just these three edge
types. Only for back edges do we have f [u] < f [v], and therefore in order to form a cycle
we need to have at least one back edge. Therefore, if a graph G has a cycle, in any DFS
forest of G there must be at least one back edge.

The above theorem implies that in order to determine whether a graph G has a cycle, it
suffices to test whether it has a back edge. How do we know whether an edge is a back edge.
The proof of the above theorem provides an easy way. We can first apply DFS to G, and we
then run through the edges, checking whether d[u] > d[v]. Can we do this on the fly as DFS
is running? The answer is yes. Observe that a back edge goes from a vertex u to an ancestor
v. Such an ancestor must have been discovered, but not yet finished. For the other non-tree
edge types, the destination v will have already finished. The main DFS function is the same,
only DFSvisit needs to be updated.

Determining whether a graph has a cycle
DFSvisit(u) { // perform a DFS search at u

mark[u] = discovered // u has been discovered

d[u] = ++time

for each (v in Adj(u)) {

if (mark[v] == undiscovered) { // undiscovered neighbor?

pred[v] = u

DFSvisit(v) // ...visit it

}

else if (mark[v] != finished) { // equivalent to f[u] <= f[v]

output "cycle found!" and terminate DFS

}

}

mark[u] = finished // we’re done with u

f[u] = ++time

}

Topological Sorting: A topological sorting (or topological ordering) of a DAG is a linear ordering
of the vertices of the DAG such that for each edge (u, v), u appears before v in the ordering.
Note that in general, there may be many valid orderings for a given DAG. We will present
a simple algorithm based on DFS. (Kleinberg and Tardos present a different algorithm. We
have elected this approach as an illustration of DFS.)

Recall our earlier comments on the nature of DFS edge types and discover/finish times. After
running any DFS on a graph, if (u, v) is a tree, forward, or cross edge, then the finish time
of u is greater than the finish time of v. Since a DAG is acyclic, there can be no back edges,
which implies that every edge goes from vertex a higher finish time to one of lower finish
times. Thus, in order to produce a topological ordering of the vertices it suffices to output
the vertices in reverse order of finish times. To do this we run a (stripped down) DFS. As
each vertex is finished, we push it onto a stack. (Thus, the later a vertex finishes, the closer
it is to the top of the stack.) Popping the elements off the stack yields the final topological

Lecture 3 2 Spring 2025

CMSC 451 Dave Mount

order.

Topological Sort via DFS
topSort(G) {

for each (u in V) mark[u] = undiscovered // initialize

S = empty stack

for each (u in V)

if (mark[u] == undiscovered) topVisit(u)

while (S is nonempty) output pop(S) // pop stack for final ordering

}

topVisit(u) { // start a search at u

mark[u] = discovered // mark u visited

for each (v in Adj(u))

if (mark[v] == undiscovered)

topVisit(v) // visit v (pushing it on stack)

push u onto S // push u when finished

}

Observe that the structure is essentially the same as the generic DFS procedure given in the
previous lecture, but we only include the elements of DFS that are needed for this application.
As with standard DFS, the running time is O(n+m) (recalling that n = |V | and m = |E|).

shorts

pants

belt

shirt

tie

jacket

socks

shoes

shorts

pants

belt shoes

jacket

shirt

tie

socks
1/10

2/9

3/6

4/5

7/8

11/14

12/13

15/16

u
d[u]/f [u]

(a) (b)

socks16, shirt14, tie13, shorts10, pants9, shoes8, belt6, jacket5

Final order:

Fig. 2: Topological ordering example.

As an example we consider the DAG showed in the Fig. 2(a), which shows the precedence
constraints for a person deciding in what order to get dressed. In the example we show
the discovery/finish times, but the algorithm does not need them. Note that there are many
different possible DFS’s of the same graph, and each one corresponds to a potentially different,
but still valid, topological ordering. (A question worth pondering is whether every possible
topological ordering arises from some DFS search.)

Longest Path in a DAG: (Optional) Here is a short exercise to test your understanding of
DFS. Suppose that you are given a DAG G = (V,E), where each vertex u ∈ V is to be

Lecture 3 3 Spring 2025

CMSC 451 Dave Mount

thought of as a task that takes time[u] time units to perform. Each edge (u, v) of the DAG
represent precedence constraints, meaning that task u must be completed before task v is
started. The question is, assuming the maximum degree of parallelism is allowed, what is the
minimum amount of time needed to complete all the tasks? This is just maximum sum of
the time values along any path in the DAG.

We can solve this in O(n+m) time through DFS. The trick is to associate each vertex u of
the DAG with the maximum length any path that emanates from this vertex. We denote
this quantity by maxTime[u]. When we first encounter a vertex u in the DFS visit procedure,
which we rename LongPathVisit, we initialize maxTime[u] = time[u]. For each adjacent vertex
v, we invoke LongPathVisit(v) if v has not yet been discovered. We let maxLength to be the
maximum maxTime of all u’s neighbors, and we set maxTime[u] = maxTime + time[u]. As
in standard DFS, the main program invokes LongPathVisit(u) for all undiscovered vertices u.
LongPathVisit(u) is given in the code-block below.

Longest Path via DFS
LongPathVisit(u) { // start a search at u

mark[u] = discovered // mark u visited

maxTime[u] = time[u] // initialize max time for u

for each (v in Adj(u)) {

if (mark[v] == undiscovered) LongPathVisit(v) // process v if undiscovered

maxTime[u] = max(maxTime[u], maxTime[v] + time[u]) // update our max time

}

}

An example is shown in Fig. 3. Each vertex’s maxTime value is the sum of its own time and
the maxTime values of its neighbors.

3

2

1

4

6

2

3

2

2

1

4

2

6

3

3 2

(a) (b)

2
11

14 13

11

52

63

1

maxTime[u]

time[u]

Fig. 3: Longest path in a DAG. Each vertex u is labeled with time[u] and maxTime[u].

Because the graph is acyclic, every edge (u, v) goes from u to a vertex v whose finish time is
greater than u’s. Therefore, maxTime[v] is fixed before it is accessed by u. The longest path
in the entire DAG is the largest value of maxTime[u] among all vertices u. The critical tasks
are those that lie on the longest path. How would you compute these?

Can this be used to compute the longest simple path in a digraph with cycles? The answer
is no, but you should think about why it does not work.

Lecture 3 4 Spring 2025

CMSC 451 Dave Mount

Strong Components: (The following material applies only to directed graphs!)

A digraph G = (V,E) is said to be strongly connected if for every vertex u and v there is a
path from u to v and from v to u. It is easy that this mutual reachabilitys relation between
vertices is an equivalence relation. This implies that it partitions V into equivalence class,
called the strong components (or strongly-connected components) of G (see Fig. 4(a) and (b)).

(b) (c)

a b

c

d

e
g

f h

ii

f, g, h, i

a, b, c

d, e

Strong components Component DAG

(a)

Digraph

a b

c

d

e
g

f h

ii

Fig. 4: Strong components and the component DAG.

If the vertices within each strong component are collapsed into a single vertex, the resulting
digraph is called the component digraph (see Fig. 4(c)). It is easy to see that the component
digraph must be acyclic (since if a number of components could be joined in a cycle, they
would collapse into a single larger strong component). Therefore, this graph is usually called
the component DAG.

There exists an O(n+m)-time DFS algorithm for computing strong components. It is based
on the following lemma.

Claim 1: If DFSvisit is started at a vertex u, it will terminate precisely when all the vertices
reachable from u have been visited.

Proof: This follows from the exhaustive nature of DFS. (Note that some of these vertices
may have been reached by earlier calls to DFSvisit.)

Claim 2: If C and C ′ are two strong components, and there is an edge from a vertex in C
to a vertex in C ′, then the highest finish time in C is bigger than the highest finish time
in C ′.

Proof: There are two cases depending on whether the DFS first encounters a vertex from
C or C ′. If it first encounters a vertex u in C, then by Claim 1 the DFS will visit all
the vertices of both C and C ′ before returning to u. Therefore, u will have the highest
finish time of every vertex in C ∪ C ′. If it first visits a vertex in C ′, then the DFS will
get stuck in C ′ (since it is not possible to reach anything in C). It follows that all the
vertices of C will have higher discovery times than those of C ′, which further implies
that they will have higher finish times as well.

Lecture 3 5 Spring 2025

CMSC 451 Dave Mount

Claim 3: The vertex that receives the highest finish time in a DFS must lie in a source
vertex of the component DAG. (Recall that a vertex in a DAG is called a source if it
has no incoming edges.)

Claim 3 is equivalent to saying that the strong components can be linearly arranged in
decreasing order of their highest finish times. By doing so, every edge in the component
DAG will go from an earlier component in the linear order to a later one. How can we exploit
this to obtain an efficient algorithm to find the strong components.

Claim 3 allows us to identify a vertex in some source of the component DAG. Unfortunately,
this is not all that useful. What would be useful is to identify a vertex in a sink of the
component DAG. If we could do this, we could start a DFS at this vertex, with the knowledge
(by Claim 2) that no other strong components would be visited. We could then delete all
these vertices (or equivalently, mark them as visited), and repeat the process. Eventually, all
the strong components will be identified, each one arising as a separate subtree of the DFS
forest.

So how to we convert an algorithm that identifies sources to one that identifies sinks in the
component DAG? The trick is to reverse all the edges of G. Let GR denote the directed
graph that has the same vertex set as G, but every edge (u, v) is replaced by its reverse (v, u).
Note that the strong components of GR are the same as G, but the direction of edges in the
component DAG have all be reversed. Thus, the sources in the component DAG of GR are
sinks in the component DAG of G. This leads to the following (insanely clever) algorithm for
computing strong components.

(1) Given G, compute GR (see Fig. 5(a)). (Note: This is a small programming exercise,
which involves a simple traversal of G’s adjacency list. It can be done in O(n + m)
time.)

(2) Run DFS(GR) and label each vertex of G with the finish time of the corresponding
vertex of GR (see Fig. 5(b)).

(3) Sort the vertices of G in decreasing order of finish times. (Note: Since finish times are
integers in the range [1, 2n], this can be done in O(n) time through Bucket Sort.)

(4) Run DFS(G), but in the outermost loop, whenever we need to find a new vertex to start
DFSvisit, take the vertex with the highest finish time (using the above sorted order).

(5) Each subtree of the DFS forest will be a strong component (see Fig. 5(c)).

The correctness of the above algorithm follows from the remarks made earlier. The running
time is O(n+m), dominated by the time to compute GR and the times for the two DFS’s.

Lecture 3 6 Spring 2025

CMSC 451 Dave Mount

(b)

d

e

g

fh

ii

(a)

DFSvisit(i) DFSvisit(e)
GR:

a

c

b

f

i

g

e

d

h

1/6

2/5

3/4

7/18

9/12

10/11

13/14

16/17
8/15

c

DFSvisit(a)

(c)

a b

c

d

e
g

f h

ii

a

Sorted: ⟨i, h, g, f, e, d, a, c, b⟩

b

Fig. 5: Strong components and DFS.

Lecture 3 7 Spring 2025

