
CMSC 451 Dave Mount

CMSC 451: Lecture 2
Graph Basics and Depth-First Search

Graphs and Digraphs: A graph G = (V,E) is a structure that represents a discrete set V
objects, called vertices or nodes, and a set of pairwise relations E between these objects,
called edges. Edges may be directed from one vertex to another or may be undirected. The
term “graph” means an undirected graph, and directed graphs are often called digraphs (see
Fig. 1). Graphs and digraphs provide a flexible mathematical model for numerous application
problems involving binary relationships between a discrete collection of object. Examples of
graph applications include communication and transportation networks, social networks, logic
circuits, surface meshes used for shape description in computer-aided design and geographic
information systems, precedence constraints in scheduling systems.

(Undirected) Graph Digraph

Fig. 1: Graphs and digraphs.

Definition: An undirected graph (or simply graph) G = (V,E) consists of a finite set V and
a set E of unordered pairs of distinct vertices.

Definition: A directed graph (or digraph) G = (V,E) consists of a finite set V and a set E
of ordered pairs of vertices.

Observe that multiple edges between the same two vertices are not allowed, but in a directed
graph, it is possible to have two oppositely directed edges between the same pair of vertices.
For undirected graphs, self-loop edges are not allowed, but they are allowed for directed
graphs. Directed graphs and undirected graphs are different objects mathematically. Certain
notions (such as path) are defined for both, but other notions (such as connectivity and
spanning trees) may be defined only for one.

Graph and Digraph Terminology: Given an edge e = (u, v) in a digraph, we say that u is the
origin of e and v is the destination of e. Given an edge e = {u, v} in an undirected graph, u
and v are called the endpoints of e. The edge e is incident on (meaning that it touches) both
u and v. Given two vertices in a graph or digraph, we say that vertex v is adjacent to vertex
u if there is an edge {u, v} (for graphs) or (u, v) (for digraphs).

In a digraph, the number of edges coming out of v is called its out-degree, denoted out-deg(v),
and the number of edges coming in is called its in-degree, denoted in-deg(v). In an undirected
graph we just talk about the degree of a vertex as the number of incident edges, denoted
deg(v).

Lecture 2 1 Spring 2025

CMSC 451 Dave Mount

When discussing the size of a graph, we typically consider both the number of vertices and the
number of edges. The number of vertices is typically written as n, and the number of edges
is written as m. (Beware: There are many different conventions. The number of vertices
may be expressed as n, v, V , or |V |, and the number of edges may be expressed as m, e, E,
or |E|.
Here are some basic combinatorial facts about graphs and digraphs. We will leave the proofs
to you. Given a graph with n vertices and m edges then:

In a graph:

Number of edges: 0 ≤ m ≤
(
n
2

)
= n(n− 1)/2 = O(n2).

Sum of degrees:
∑

v∈V deg(v) = 2m.

In a digraph:

Number of edges: 0 ≤ m ≤ n2.

Sum of degrees:
∑

v∈V in-deg(v) =
∑

v∈V out-deg(v) = m.

Notice that generally the number of edges in a graph may be as large as quadratic in the
number of vertices. However, the large graphs that arise in practice typically have much fewer
edges. A graph is said to be sparse if m is O(n), and dense, otherwise. When giving the
running times of algorithms, we will usually express it as a function of both n and m, so that
the performance on sparse and dense graphs will be apparent.

Paths and Cycles: A path in a graph or digraph is a sequence of vertices ⟨v0, . . . , vk⟩ such that
(vi−1, vi) is an edge for i = 1, . . . , k. The length of the path is the number of edges, k. A
path is simple if all vertices and all the edges are distinct. A cycle is a path containing at
least one edge and for which v0 = vk. A cycle is simple if its vertices (except v0 and vk) are
distinct, and all its edges are distinct.

A graph or digraph is said to be acyclic if it contains no simple cycles. An acyclic connected
graph is called a free tree or simply tree for short (see Fig. 2). (The term “free” is intended to
emphasize the fact that the tree has no root, in contrast to a rooted tree, as is usually seen in
data structures.) An acyclic undirected graph (which need not be connected) is a collection
of free trees, and is called a forest. An acyclic digraph is called a directed acyclic graph, or
DAG for short (see Fig. 2).

(Free) Tree DAG Bipartite graph

Fig. 2: Illustration of common graph terms.

A bipartite graph is one in which the vertices of a graph can be partitioned into two disjoint
subsets, denoted V1 and V2, such that all the edges have one endpoint in V1 and one in V2

(see Fig. 2). Note that every cycle in a bipartite graph contains an even number of edges.

Lecture 2 2 Spring 2025

CMSC 451 Dave Mount

We say that w is reachable from u if there is a path from u to w. Note that every vertex is
reachable from itself by a trivial path that uses zero edges. An undirected graph is connected
if every vertex can reach every other vertex. (Connectivity is a bit messier for digraphs, and
we will define it later.) The subsets of mutually reachable vertices partition the vertices of
the graph into disjoint subsets, called the connected components of the graph. In digraphs
the notion of reachability is a bit different, because it is possible for u to reach w but not vice
versa. A digraph is said to be strongly connected if for each u and w, there is a path from u
to w and a path from w to u.

Representations of Graphs and Digraphs: There are two common ways of representing graphs
and digraphs. First we show how to represent digraphs. Let G = (V,E) be a digraph with
n = |V | and let m = |E|. We will assume that the vertices of G are indexed {1, 2, . . . , n}.

Adjacency Matrix: An n× n matrix defined for 1 ≤ v, w ≤ n.

A[v, w] =

{
1 if (v, w) ∈ E
0 otherwise.

(See Fig. 3.) If the digraph has weights we can store the weights in the matrix. For
example if (v, w) ∈ E then A[v, w] = W (v, w) (the weight on edge (v, w)). If (v, w) /∈ E
then generally W (v, w) need not be defined, but often we set it to some “special” value,
e.g. A(v, w) = −1, or ∞. (By ∞ we mean some number which is larger than any
allowable weight.)

It might come as a surprise, but there are a number of interesting relationships between
the use of matrices to represent graphs and the matrices that arise in linear algebra to
represent linear transformations. For example, the eigenvalues of the adjacency matrix
of a graph provide a lot of information about the structure of the graph.

Adjacency List: An array Adj[1 . . . n] of pointers where for 1 ≤ v ≤ n, Adj[v] points to a
list (e.g., a singly or doubly linked list) containing the vertices that are adjacent to v
(i.e., the vertices that can be reached from v by a single edge). If the edges have weights
then these weights may also be stored in the linked list elements (see Fig. 3).

1

2 3

1

2

3

1 1 1

0 0

0 0

1

1

1 2 3

1

2

3

1

3

2

2 3

Adjacency matrix Adjacency list

Adj

Fig. 3: Adjacency matrix and adjacency list for digraphs.

We can represent undirected graphs using exactly the same representation, but we will store
each edge twice. In particular, we representing the undirected edge {v, w} by the two op-
positely directed edges (v, w) and (w, v) (see Fig. 4). Notice that even though we represent

Lecture 2 3 Spring 2025

CMSC 451 Dave Mount

undirected graphs in the same way that we represent digraphs, it is important to remember
that these two classes of objects are mathematically distinct from one another.

This can cause some complications. For example, suppose you write an algorithm that oper-
ates by marking edges of a graph. You need to be careful when you mark edge (v, w) in the
representation that you also mark (w, v), since they are both the same edge in reality. When
dealing with adjacency lists, it may not be convenient to walk down the entire linked list, so
it is common to include cross links between corresponding edges.

1

2

3

1 1 1

0

0

0

00

1 2 3

Adjacency matrix Adjacency list (with crosslinks)

Adj

1

2 3

4

4

4

1

1

1

1

1

0

0 0

1

2

3

4

2 3 4

1

1 4

1 3

Fig. 4: Adjacency matrix and adjacency list for graphs.

An adjacency matrix requires Θ(n2) storage, and an adjacency list requires Θ(n+m) storage.
The n arises because there is one entry for each vertex in Adj . Since each list has out-deg(v)
entries, when this is summed over all vertices, the total number of adjacency list records is
Θ(m). For most applications, the adjacency list representation is standard.

Depth-First Search: One of the most important basic operations on a graph is to systematically
visit all its vertices. These traversals natually impose a type of tree structure (or generally a
forest) on the graph, and trees are usually much easier to reason about than general graphs.

We are given a graph G = (V,E), which may be directed or undirected. We employ four
auxiliary arrays. To avoid revisiting the same vertex, we maintain a mark for each ver-
tex: undiscovered, discovered, finished. Additional information can be stored as part of the
traversal process:

Discovery time: d[u] indicates the time when vertex u was discovered, which coincides with
the moment that the DFS process is started at this vertex.

Finish time: f [u] indicates the time when vertex u is finished processing. At this point, all
of u’s neighboring nodes have been visited, and indeed, everything reachable from u has
been discovered and possibly finished.

Predecessor pointer: p[u] indicates the vertex that discovered u. Each edge of the form
(p[u], u) is a tree edge in the DFS recursion tree.

DFS induces a tree structure. In order to handle instances where not all vertices are reach-
able from the starting vertex, we include a main program that invokes DFS whenever an
undiscovered vertex is encountered. The main program is shown in code block below and the
recursive DFSvisit function is shown in the next code block. (Fig. 5 illustrates the execution
on an undirected graph, and Fig. 6 shows an example on a directed graph.)

Lecture 2 4 Spring 2025

CMSC 451 Dave Mount

Depth-First Search (Main Program)
DFS(G) { // main program

time = 0

for each (u in V) // initialization

mark[u] = undiscovered

for each (u in V)

if (mark[u] == undiscovered) // undiscovered vertex?

DFSVisit(u) // ...start a new search here

}

DFS Visit (Process a single node)
DFSVisit(u) { // perform a DFS search at u

mark[u] = discovered // u has been discovered

d[u] = ++time

for each (v in Adj(u)) {

if (mark[v] == undiscovered) { // undiscovered neighbor?

pred[v] = u

DFSVisit(v) // ...visit it

}

}

mark[u] = finished // we’re done with u

f[u] = ++time

}

G :

a

s

b

d

e
g

f

c

s
1/.. s

1/..

a
2/..

b
3/..

s
1/..

a
2/..

b
3/..

c
4/..

d
5/..

s
1/..

a
2/..

b
3/..

c
4/7

d
5/6

e
8/..

s
1/..

a
2/..

b
3/..

c

d
5/6

e
8/..

g
9/..

f
10/..

s
1/16

a
2/15

b
3/14

c
4/7

d
5/6

e
8/13

g
9/12

f
10/11

visit(s) visit(a)

visit(b)

visit(c)

visit(d)

return d

return c

visit(e)

visit(g)

visit(f)

return f

return g
. . .

return s

4/7

Fig. 5: Depth-first search on an undirected graph. (Blue nodes are discovered, and pink nodes are
finished. Each node u is labeled with the values d[u]/f [u].)

Lecture 2 5 Spring 2025

CMSC 451 Dave Mount

G :

a

b

c g

f

ed

a

b

c

1/10

3/4

f

g

6/9

7/8

2/5

d

e

11/14

12/13

a

b

c

1/10

3/4

f

g

6/9

7/8

2/5

a

b

c

1/..

3/4

f

g

6/..

7/..

2/5

a

b

c

1/..

3/4

2/5

a

b

c

1/..

3/..

2/..

visit(a)

visit(b)

visit(c)

return c

return b

visit(f)

visit(g)

return f

return a

return g visit(e)

return e

visit(d)

return d

Fig. 6: Depth-first search on a directed graph. (Blue nodes are discovered, and pink nodes are
finished. Each node u is labeled with the values d[u]/f [u].)

Analysis: The running time of DFS is O(n + m). We’ll do the analysis for undirected graphs.
First observe that if we ignore the time spent in the recursive calls, the main DFS procedure
runs in O(n) time. Each vertex is visited exactly once in the search, and hence the call
DFSVisit() is made exactly once for each vertex. We can just analyze each one individually
and add up their running times. Ignoring the time spent in the recursive calls, we can see
that each vertex u can be processed in O(1 + deg(u)) time (the “+1” is needed in case the
degree is 0). Thus the total time used in the procedure is

T (n) = n+
∑
u∈V

(1 + deg(u)) = n+

(∑
u∈V

deg(u)

)
+ n = 2n+m = O(n+m).

A similar analysis holds if we consider DFS for digraphs.

Parenthesis Lemma and Edge Types: DFS naturally imposes a tree structure (actually a col-
lection of trees, or a forest) on the structure of the graph. This is just the recursion tree,
where the edge (u, v) arises when processing vertex u we call DFSVisit(v) for some neighbor
v. The hierarchical structure naturally imposes a nesting structure on the discovery-finish
time intervals. This is described in the following lemma (and illustrated in Fig. 7(a)).

Lemma: (Parenthesis Lemma) Given a graph G = (V,E) (directed or undirected), and any
DFS tree for G and any two vertices u, v ∈ V :

� u is a descendant of v iff [d[u], f [u]] ⊆ [d[v], f [v]].

� u is an ancestor of v iff [d[u], f [u]] ⊇ [d[v], f [v]].

� u and v are unrelated (in terms of ancestor/descendant) iff [d[u], f [u]] and [d[v], f [v]]
are disjoint.

Lecture 2 6 Spring 2025

CMSC 451 Dave Mount

1 142 3 4 5 6 7 8 9 10 11 12 13

a d

eb f

c g

(b)(a)

a

b

c

1/10

3/4

f

g

6/9

7/8

2/5

d

e

11/14

12/13
tree
forward
back
cross

Fig. 7: (a) the Parenthesis Lemma and (b) the DFS edge types.

The structure of the remaining (non-tree) edges of the graph depend on the type of graph
involved. For undirected graphs, the remaining edges are called back edges. An important
observation is that for each back edge (u, v), u is either a proper ancestor or a proper de-
scendant of v. To see why, consider any non-tree edge (u, v). Since the graph is undirected,
we may assume without loss of generality that u was discovered before v. By the parenthesis
lemma, this means either that u is an ancestor of v (and we are done) or that their discovery-
finish intervals are disjoint. If they are disjoint, u must finish before v is discovered. However,
this is impossible, because as we are processing u, we will see the edge (u, v) and thus discover
v.

For directed graphs the non-tree edges of the graph can be classified as follows (See
Fig. 7(b)):

Back edges: (u, v) where v is a (not necessarily proper) ancestor of u in the tree. (Thus, a
self-loop edge is considered to be a back edge.)

Forward edges: (u, v) where v is a non-child, proper descendant of u in the tree.

Cross edges: (u, v) where u and v are not ancestors or descendants of one another (in fact,
the edge may go between different trees of the forest).

It is not difficult to classify the edges of a DFS tree on-the-fly by analyzing the vertex status
(undiscovered, discovered, finished) and/or considering the time stamps. (This is left as an
exercise.)1

1Be careful, however. Remember that in an undirected graph, every edge is represented twice. When classifying
back edges, you should be sure that you are not seeing the other half of a tree edge.

Lecture 2 7 Spring 2025

