
CMSC 451 Dave Mount

CMSC 451: Lecture 1
Introduction to Algorithm Design

What is an algorithm? This course will focus on the study of the design and analysis of algo-
rithms for discrete (as opposed to numerical) problems. We can define algorithm to be:

Any well-defined computational procedure that takes some values as input and
produces some values as output.

The concept of a “well-defined computational procedure” dates back to ancient times. In fact,
the word “algorithm” is derived from the Latin form of the Persian scholar Muhammad ibn
Musa al-Khwarizmi, who lived in ninth century A.D. Al-Khwarizmi codified procedures for
numerous arithmetic operations (such as addition, multiplication, and division with Arabic
numerals) and algebraic and trigonometric operations (such as computing square roots and
computing the digits of π).

Why study algorithm design? While the study of algorithms predates digital computers, the
field really took off with the advent of computers. The use of asymptotic (big-Oh) notation
became popular in the 1960’s and 1970’s as a means to provide a rigorous mathematical mea-
sure of an algorithm’s running time. This evolved into the field of computational complexity,
which seeks to categorize computational problems according to their complexity. This gave
rise to the study of NP-Hard problems.

The field has also led to the development of general techniques for the design of efficient
algorithms, such as divide-and-conquer, greedy algorithms, dynamic programming, and so
on.

From a more practical perspective, algorithm design and analysis is often the first step the
development of software for tricky combinatorial problems. Asymptotic analysis is used to
identify promising solutions, which can then be prototyped in order to determine which
methods perform best.

Course Overview: This course will consist of a number of major sections. The first will be a short
review of some preliminary material, including asymptotics, summations and recurrences,
sorting, and basic graph algorithms. These have been covered in earlier courses, and so we
will breeze through them pretty quickly. Next, we will consider a number of common algorithm
design techniques, including greedy algorithms, dynamic programming, and augmentation-
based methods (particularly for network flow problems).

Most of the emphasis of the first portion of the course will be on problems that can be solved
efficiently, in the latter portion we will discuss intractability and NP-hard problems. These
are problems for which no efficient solution is known. Finally, we will discuss methods to
approximate NP-hard problems, and how to prove how close these approximations are to the
optimal solutions.

Issues in Algorithm Design: Algorithms are mathematical objects (in contrast to the must
more concrete notion of a computer program implemented in some programming language
and executing on some machine). As such, we can reason about the properties of algorithms

Lecture 1 1 Spring 2025



CMSC 451 Dave Mount

mathematically. When designing an algorithm we need to be concerned both with its cor-
rectness and efficiency.

Intuitively, an algorithm’s efficiency is a function of the amount of computational resources
it requires, measured typically as execution time and the amount of space, or memory, that
the algorithm uses. The amount of computational resources can be a complex function of
the size and structure of the input set. In order to reduce matters to their simplest form, it
is common to consider efficiency as a function of input size, which is usually represented by
the symbol n. For example, in a sorting algorithm, this might be the number of items to be
sorted. In a graph algorithm, this might be the number of vertices and/or edges in the graph.
In a numerical algorithm like factoring, this might be the number of digits in a number. Since
there are many inputs of the same input size, there are two common ways to aggregate these
into a single quantity.

Worst-case complexity: Among all inputs of the same size, what is the maximum running
time?

Average-case complexity: Among all inputs of the same size, what is the expected running
time? This expectation is computed assuming that the inputs are drawn from some given
probability distribution. The choice of distribution can have a significant impact on the
final conclusions.

Asymptotic Notation: Asymptotic O-notation (“big-O”) provides us with a way to simplify the
messy functions that often arise in analyzing the running times of algorithms. Suppose that
we analyze two algorithms, and find that they have running times of:

T1(n) = 3.9n+ 4.17 log n+ 3.5n2 and T2(n) = max(4.6n(log n)4, 6.4n3 − 3n log3 n).

Which of these algorithms is better? Asymptotic analysis is based on (1) focusing on the
growth rate by considering the performance as the value of n increases to infinity and (2)
ignoring constant factors, which tend to rely on secondary issues such as programming style
and machine architecture. We’ll give the formal definition later, but intuitively we can say
that T1 grows on the order of n2 and T2 grows on the order of n3, that is

T1(n) = O(n2) and T2(n) = O(n3).

Here’s a formal definition:

Asymptotic noation: A function f(n) is O(g(n)) if there exist constants c > 0 and n0 ≥ 0
such that, f(n) ≤ c · g(n), for all n ≥ n0.

Intuitively, big-O notation can be thought of as a way of expressing a sort of fuzzy “≤”
relation between functions, where by fuzzy, we mean that constant factors are ignored and
we are only interested in what happens as n tends to infinity.

Another (and often easier) way to think about asymptotics is in terms of limits. An alternative
definition is that f(n) is O(g(n)) if

lim
n→∞

f(n)

g(n)
≤ c, for some constant c ≥ 0.

Lecture 1 2 Spring 2025



CMSC 451 Dave Mount

For example, we can say that T1(n) is O(n2) since

lim
n→∞

3.9n+ 4.17 log n+ 3.5n2

n2
= lim

n→∞

(
3.9

1

n
+ 4.17

log n

n2
+ 3.5

)
= 3.5,

since in the limit 1/n and log n/n2 both tend to zero in the limit.

Big-O notation has a number of relatives, which are useful for expressing other sorts of
relations. These include Ω (“big-omega”), Θ (“theta”), o (“little-oh”), ω (“little-omega”). Let
c denote an arbitrary positive constant (not 0, not ∞, and not depending on n). Intuitively,
each represents a form of “asymptotic relational operator”:

Notation Relational Form Limit Definition

f(n) is o(g(n)) f(n) ≺ g(n) lim
n→∞

f(n)

g(n)
= 0

f(n) is O(g(n)) f(n) ⪯ g(n) lim
n→∞

f(n)

g(n)
= c or 0

f(n) is Θ(g(n)) f(n) ≈ g(n) lim
n→∞

f(n)

g(n)
= c

f(n) is Ω(g(n)) f(n) ⪰ g(n) lim
n→∞

f(n)

g(n)
= c or ∞

f(n) is ω(g(n)) f(n) ≻ g(n) lim
n→∞

f(n)

g(n)
= ∞.

By far, the most commonly arising functions in algorithm analysis are of one of three forms.
They are:

Polylogarithmic: Of the form (log n)a = loga n, for some constant a,

Polynomial: Of the form na, for some constant a, and

Exponential: Of the form an, for some constant a.

(There are, of course, many functions that do not fit into any of these categories, such as
O(nlogn).)

For any a, b, c, such that a, b > 0 and c > 1 we have the following relative order:

(log n)a ≺ nb ≺ cn.

To keep matters simple, we will focus almost exclusively on worst-case analysis measured
using asymptotic analysis in this course. You should be mindful, however, that worst-case
analysis is not always the best way to analyze an algorithm’s performance. For example,
some algorithms have the property that they run very fast on typical inputs but might run
extremely slowly (perhaps hundreds to thousands of times slower) on a very small fraction
of pathological inputs. For such algorithms, an average case analysis may be a much more
accurate reflection of the algorithm’s true performance. Also, sometimes one algorithm will
have a better asymptotic complexity, but the constant factors are so large that there is no
practical value of n where its running time is better, such as 9999n versus 2n log n.

Lecture 1 3 Spring 2025



CMSC 451 Dave Mount

Describing Algorithms: Throughout out this course, when you will be asked to present an
algorithm. This means that you need to do three things:

Present the Algorithm: Give a clear, simple, and unambiguous description of the algo-
rithm (in plain English prose or pseudo-code, for example). A guiding principal here
is to remember that your description will be read by a human, and not a compiler.
Obvious technical details should be kept to a minimum so that the key computational
issues stand out.

Prove its Correctness: Present a justification (that is, an informal proof) of the algo-
rithm’s correctness. This justification may assume that the reader is familiar with the
basic background material presented in class. Try to avoid rambling about obvious or
trivial elements and focus on the key elements. A good proof provides a high-level
overview of what the algorithm does, and then focuses on any tricky elements that may
not be obvious.

Analyze its Efficiency: Present a worst-case analysis of the algorithms efficiency, typically
it running time (but also its space, if space is an issue). Sometimes this is straightfor-
ward and other times it might involve setting up and solving a complex recurrence or
a summation. When possible, try to reason based on algorithms that you have seen.
For example, the recurrence T (n) = 2T (n/2) + n is common in divide-and-conquer
algorithms (like Mergesort) and it is well known that it solves to O(n log n).

Note that your presentation does not need to be in this order. Often it is good to begin
with an explanation of how you derived the algorithm, emphasizing particular elements of
the design that establish its correctness and efficiency. Then, once this groundwork has been
laid down, present the algorithm itself. If this seems to be a bit abstract now, don’t worry.
We will see many examples of this process throughout the semester.

Background Information: We will assume that you have familiarity with the information from
an introductory algorithms course. It is expected that you have knowledge of:

� Basic programming skills (programming with loops, pointers, structures, recursion)

� Discrete mathematics (proof by induction, sets, permutations, combinations, and prob-
ability)

� Understanding of basic data structures (lists, stacks, queues, trees, graphs, and heaps)

� Knowledge of sorting algorithms (MergeSort, QuickSort, HeapSort, CountingSort, and
RadixSort) and basic graph algorithms (minimum spanning trees and depth-first search)

� Basic calculus (manipulation of exponentials, logarithms, differentiation, and integra-
tion)

Topics to be Covered: Here is a tentative list of topics to be covered in this course.

Introduction: Review of algorithm design and analysis, review of basic graph theory and
graph representations¡

Graph Exploration: DFS and BFS, topological sorting, strong components, shortest paths

Lecture 1 4 Spring 2025



CMSC 451 Dave Mount

Greedy Algorithms: Interval scheduling and partitioning, scheduling to minimize lateness,
greedy graph algorithms

Dynamic Programming: Weighted interval scheduling, longest common subsequences, chain
matrix multiplication, all-pairs shortest paths in graphs

Network Flow: Network flow algorithms, bipartite matching, circulations and applications

NP-Hardness and Intractability: Polynomial-time reductions, the definition of NP, NP-
complete problems

Approximation Algorithms: Greedy algorithms and polynomial-time approximation schemes
(and examples)

Lecture 1 5 Spring 2025


