
CMSC 451:Spring 2025 Dave Mount

Solutions to the Midterm Exam

Solution 1: See Fig. 1. Edges (b, d) and (e, f) are cross edges. The rest are tree edges.

c d

a

f

b

e

1/8

2/3
4/7

5/6

9/12

10/11 Topological order: ⟨b, e, a, d, f, c⟩

Figure 1: Depth-first search and topological sorting.

Solution 2:

(a) Θ(n3): If you grind through the summations it comes out to roughly n3/6. This is the same
loop structure as the DP for chain-matrix multiplication.

(b) For a graph with n vertices and n edges:

(i) This graph must be connected - False

(ii) This graph must have at least one cycle - True (A tree has n − 1 edges and this is the
greatest number of edges you can have without creating a cycle)

(iii) The average vertex degree is O(1) - True (The total degree is twice the number of edges,
so the average degree is exactly 2)

(c) Dijkstra’s algorithm on a directed graph with a negative cost cycle:

(i) It may generate incorrect distance values - True

(ii) It may go into an infinite loop - False (Dijkstra processes each vertex exactly once)

(iii) It may abort due to indexing an array out of bounds - False

(d) Optimal for interval scheduling?

(i) EFF (Earliest finish-time first) - Yes

(ii) SDF (Shortest duration first) - No (But this yields a factor-2 approximation)

(iii) FCF (Fewest conflicts first) - No (There is a counterexample)

(iv) LSL (Latest start-time last) - Yes (This is the same as EFF on the reversed input)

(e) (ii) dist(c1, c2) ≥ diam(P)/2. Given the first two points c1 and c2 of Gonzalez’s algorithm,
the point c2 is chosen to be the farthest point from c1. This implies that all the points lie
within a ball of radius r = dist(c1, c2) from c1. The diameter of this ball, and hence the
diameter of P is at most twice this radius.

1

(f) In Floyd-Warshall, the value k in d(k)(i, j), means that the shortest path can travel through
a subset of the vertices {1, 2, . . . , k}.

(g) Pushing flow along a forward edge (u, v), increases the flow on (u, v). Pushing flow along a
backwards edge (v, u), decreases the flow on (u, v).

Solution 3:

(a) The network G′ is the same as G, but with the following modifications. For each vertex v
with a nonzero leakage capacity h(v), we create an edge (v, t) and assign it capacity h(v) (see
the dashed edges in Fig. 2(b)). (This is a multi-digraph, since we may generate duplicate
edges, but we can always merge edges and combine their capacities.)

To see that this is correct, suppose that there is a leaky flow f in G. For each vertex v, let
g(v) = f in(v)− fout(v) denote the amount of leakage. By definition of leaky flows, we know
that 0 ≤ g(v) ≤ h(v). We assign flow of g(v) to the edge (v, t) (see Fig. 2(d)). Call the
resulting flow f ′ in G′. This additional flow compensates for the leaked flow at u, implying
that f ′ satisfies flow conservation. Since the leakage cannot exceed h(v), this flow satisfies
the capacity constraint. The converse is similar.

1/1

1/2

2/3

s t

1

0

2
3

G
8

5

3

1

4

3

5

4

s t

G′
8

5

3

1

4

3

5

4
1

2

3

(c)

s t

0

2
3

G, f
8/9

4/6

3/3

1/1
3/3

3/3

4/5

4/4
1

(d)

s t

G′, f ′
8/9

4/6

3/3

1/1
3/3

3/3

4/5

4/4

(a) (b)

Figure 2: (a) A leaky network G, (b) the transformed (non-leaky) network G′, (c) a leaky flow in
G, and (d) the equivalent non-leaky flow in G′.

(b) See Fig. 2(b).

Solution 4:

(a) A counterexample is shown in Fig. 3(a). The optimal solution consists of two pins (see
Fig. 3(b)). The depth-based algorithm places a pin in the center, which has the highest depth
of four. It still needs to place two more pins to cover the leftmost and rightmost intervals
(see Fig. 3(c)).

2

(a) (b) (c)

Opt Greedy

Figure 3: Counterexample to the depth-based heuristic.

(b) depth(I)/opt(I) ≤ lnn: This is essentially equivalent to the greedy set cover algorithm.
We can restrict placement of pins to the n right endpoints of the intervals. (Any valid pin
placement can be slid to the right until it hits a right endpoint.) Let B denote the set of right
interval endpoints. Consider a set system (X,Σ) where the elements are intervals (X = I),
and for each right endpoint b ∈ B, we define set S(b) to be the intervals that are stabbed by
b. Let Σ denote this collection of sets.

A stabbing set is equivalent to computing a minimum-sized set of right interval endpoints
b ∈ B (pins) that stab all the intervals of I. From the perspective of our set system, this is
equivalent to computing a minimum-sized collection of sets S(b) ∈ Σ that cover all elements
X = I. These two problems are equivalent, and depth-based pinning heuristic is clearly
equivalent to the greedy set cover heuristic. We know that the approximation ratio of the
greedy heuristic for set cover is lnn, where n = |X| = |I|.

(c) The greedy solution is based on the idea of “delaying” the placement of each pin as far as
possible to the right. To begin, sort the intervals by their right endpoints b1 < · · · < bn. We
visit the intervals in this order. Place a pin at the first endpoint in the list (initially at b1).
Since this interval must contain a pin, this is the farthest right we can place this first pin.
Now, remove all the intervals that are hit by this pin, or equivalently, all those whose left
endpoint appears on or before bi (see Fig. 4(b)).

(a) (b) (c)

Opt = Greedy
Opt

Greedy

Figure 4: Greedy algorithm for 1-dimensional pinning.

To see that this algorithm is correct, observe that each time we place a pin, we eliminate
exactly those intervals that are stabbed by this pin, therefore every interval will be stabbed
when the algorithm terminates. To see that this is optimal, consider list in pins in order from
left to right. By its greedy nature, the greedy solution puts the each pin in the farthest right
position possible. Thus, if greedy differs from opt, in their first difference, opt’s pin will lie

3

to the left of greedy’s pin (see Fig. 4(c)). We can slide this pin of opt to the right as far
as possible, until it hits the greedy pin. Since greedy is valid, the result of this sliding will
also be a valid solution. By repeating this, eventually opt will be turned into greedy, without
adding any more pins, and therefore greedy and opt use the same number of pins.

The DP algorithm is also based on sorting by right endpoints. For 0 ≤ i ≤ n, define P (i)
to be the minimum number of pins needed to stab the first i intervals in this order. For the
basis case, P (0) = 0. In general, to compute P (i), we place a pin at the farthest left location,
namely ai. Define pred[i] to be the largest index j such that bj < ai (or 0 if no such index
exists). All the intervals from j + 1 through i are stabbed by the pin at ai. Thus, all that
remains are to stab the first pred[i] intervals, whose value is just P (pred[i]). This leads to
the following DP formulation:

P (i) =

{
0 if i = 0
1 + P (pred[i]) otherwise

(This formulation has the property that it generates pins as far to the left as possible, while
the greedy places pins as far to the right as possible. Clearly, these two strategies are just
mirror images of each other. Even though it is written in DP form, it is effectively a greedy
algorithm.)

Solution 5: We assume we have access to a utility function len(i, j), which, for 1 ≤ i ≤ j ≤ n,
returns the sum of word lengths

∑j
k=1wk. Our solutions are based on a recursion that works down

from n, but there are symmetrical solutions where the recursion works up from 0.

(a) (This is identical to the problem from Homework 3, except that the cost function is different.)
For 0 ≤ j ≤ n, let MG(j) denote the minimum value of the max-gap for typesetting the first j
words. For the basis case we have MG(0) = 0, since there are no words and hence no penalty.
To compute MG(j) for j ≥ 1, let us hypothesize that some word wi is the first word of the
line for 1 ≤ i ≤ j. Clearly, len(i, j) ≤ L. This line has j − i+ 1 words. The gap size for this
line is gap(i, j), where

gap(i, j) =

 0 if i = j
L− len(i, j)

j − i+ 1
otherwise.

We should take the best possible segmentation of the prior i− 1 words, which has a max gap
of MG(i− 1). Among the available options, we select the one that produces the lowest value.
Thus, we have the following formulation:

MG(j) =


0 if j = 0
min

1≤ i≤ j

len(i,j)≤L

max (gap(i, j),MG(i− 1)) otherwise.

The overall answer is MG(n).

The above solution involves a 1-parameter function, but requires a loop to determine the best
split. Another approach (which yields the same running time, but takes more space) is based

4

on a 2-parameter function. For 1 ≤ i ≤ j ≤ n, let MP′(i, j) denote the smallest achievable
max-gap for typesetting the first j words, under the assumption that the last line starts on
or before wi. The final answer will be MP′(n, n). To avoid dealing with cases where the total
word length exceeds the line length, let us define

penalty(i, j) =

{
L− len(i, j) if len(i, j) ≤ L
∞ otherwise

For the basis case, observe that if i = 1, then we are putting all the words on a single line,
and the overall penalty is penalty(i, j). Otherwise, i ≥ 2. Either the last line starts with
wi, in which case the penalty for this last line is penalty(i, j). The remaining subproblem is
to typeset the first i − 1 words, which is MP′(i − 1, i − 1). The overall max-penalty is the
maximum of these two. Otherwise, the last line starts earlier than wi (that is, on or before
wi−1), in which case the overall penalty is given by MP′(i − 1, j). As always, we take the
better of these two options.

MP′(i, j) =

{
penalty(i, j) if i = 1
min(max(penalty(i, j),MP′(i− 1, i− 1)),MP′(i− 1, j)) otherwise.

Note that once len(i, j) exceeds L, MP′(i, j) will be ∞, thus if we were to implement this, we
could add this additional check to avoid unnecessary recursive function calls.

If implemented, both solutions would take O(n2) time.

Here is yet another DP solution. In a manner analogous to matrix multiplication, we define
MP′′(i, j) to be the smallest achievable max-gap for typsetting words wi through wj . If
the words fit on a single line, we take the penalty. Otherwise, the DP looks for the best
intermediate word wk about which to split the line.

MP′′(i, j) =

{
penalty(i, j) if len(i, j) ≤ L
mini≤k≤j−1(max(MP′′(i, k − 1)),MP′′(k, j)) otherwise.

If implemented, this would take O(n3) time.

(b) Two approaches to this problem come to mind. The first is to augment the DP formulation
of part (a) to account for line numbers. The second is slower, but it is quick and easy to
describe. It is based on just “guessing” where to the split the text, and applying the solution
to part (a) to each of the parts, one with line length L1 and the other with L2.

Let’s describe the DP first. The idea is to use an additional parameter that stores the line
number, call it ℓ. Unfortunately, our formulation, which recurses down from n, is difficult
to adapt, because we don’t know what the final line number will be. Instead, let’s recurse
upwards. For 0 ≤ i ≤ n and ℓ ≥ 1, let MG(i, ℓ) denote the minimum value of the maximum
gap for typesetting words wi through wn words assuming that wi will be placed on line ℓ. The
initial call is MG(1, 1). The formulation is similar to part (a), except that we search forward
from i and increment ℓ in our recursive calls. Also, let’s define L(ℓ) to be L1 if ℓ ≤ 3 and L2

otherwise. Define gap(i, j, L(ℓ)) to be the same gap function, but the third parameter gives
the line length to use.

MG(i, ℓ) =


0 if i > n

min
i≤ j≤n

len(i,j)≤L(ℓ)

max (gap(i, j, L(ℓ)),MG(i+ 1, ℓ+ 1)) otherwise.

5

If implemented, the running time will be essentially the same as the part (a) solution, that
is, O(n2). (By the way, we could have used our count-down recursion, but we would need
to “guess” the final number of lines. Since this quantity is at most n, we just try all the
possibilities, but this would increase the running time by a factor of n.)

The second approach is much easier to describe. Observe that there is one decision to be
made, namely which is the last word wj to appear on the third line. Following the DP-credo,
let’s just try all possible choices for j, 1 ≤ j ≤ n. For any candidate value j, we invoke the
solution from part (a) on the words ⟨w1, . . . , wj⟩ using line length L1, and then we invoke on
the remaining words ⟨wj+1, . . . , wn⟩ using L2. We will take the maximum of the two solutions.
In order to enforce the 3-line condition, we will check that the solution produced by the first
invocation fits onto three lines. (We will need to add some hooks to record this information.)
If not, we reject this value of j from the list of candidates.

This is not super efficient. It necessitates invoking (a) up to n times, so the running time will
be worse than (a) by a factor of O(n), which will be O(n3).

6

