
CMSC 451:Spring 2025 Dave Mount

Solutions to the Practice Midterm Problems

(Updated: Tue, Apr 1.)

Solution 1:

(a) Θ(n): The innermost loop is executed i times, and each time the value of i is halved. So the
overall running time is

n+
n

2
+

n

4
+ . . .+ 1 = n

(
1 +

1

2
+

1

4
+ . . .

)
≤ 2n = Θ(n).

(b) kn/2: The sum of degrees of the vertices of such a degree-k graph is at most kn. The sum
of degrees in a graph is twice the number of edges (since each edge is counted twice, one for
each endpoint). Therefore, the number of edges is at most kn/2.

(c) d[v] < d[u] < f [u] < f [v]: This follows from the DFS Parentheses Lemma. Here is a direct
argument. By the recursive nature of DFS, descendants (and, in particular, children) are
discovered later and finish earlier.

(d) False. After offsetting, the cost of each path is biased by the added value C multiplied by the
number of edges on the path. Thus, two paths of equal total weight, but which have different
numbers of edges would have affected differently. This implies that shortest paths are not
preserved.

(e) It has at least one negative-cost cycle: Bellman-Ford converges under the assumption that the
graph has no negative cost cycles. In particular, the d-values along any negative cost path
(and any vertices reachable from this cycle) just get smaller and smaller as the algorithm
iterates.

(f) All four statements hold: Because Gonzalez only adds (never removes) centers, as more
centers are added, the ∆i and Γi values can only get smaller (or stay the same). When a new
center is added in some iteration, it is placed at the point that has the maximum distance to
its closest center. This implies that Γi+1 ≤ ∆i, and hence Γ4 ≤ ∆3. In Lecture 6 (Claim 2),
it was proved Γi ≥ ∆i−1, and hence Γ4 ≥ ∆3.

(g) The max flow value will be evenly divisible by 3, and further, (if it is computed using path-
augmentation, like Ford-Fulkerson) the flow values on each edge will also be evenly divisible
by 3. To see this, just divide all the capacities by 3. They are still integers, and it is known
that the Ford-Fulkerson algorithm generates an optimal, integer-valued flow. To return to
the original problem, multiply all flow values by 3.

Solution 2: This is hard to do by a direct application of DFS. There are a couple ways to
do this. First, we could apply topological sorting, and then process the vertices in increasing
topological order. We initialize L[v]← 0 for all vertices. Whenever we visit a vertex u, for each of
its neighbors v, we set L[v] ← max(L[v], L[u] + 1). Both the topological sort and this subsequent

1

processing take O(n+m) time. This works, because whenever we visit any vertex v, we know that
all its predecessors have been visited, and hence their L-values are fixed.

Here is an alternative approach based on DFS. We begin by computing the edge-reversed graph
GR. We have indicated in class that this can be constructed in O(n+m) time, by a simple traversal
of the adjacency list. In GR, L[v] is the length of the longest path that starts at v. We can compute
this by DFS. In particular, when we visit each vertex u, we apply DFS recursively to all its neighbors
v. On return, their L-values are fixed, and so we set L[u] ← max(L[u], L[v] + 1). The DFSvisit
portion of the algorithm is given in the following code block. As a standard application of DFS, it
runs in O(n+m) time.

Longest path emanating from each vertex
longest-path(u) { // longest path starting at u

mark[u] = discovered

L[u] = 0

for each (v in Adj(u)) { // visit all of u’s neighbors

if (mark[v] == undiscovered)

longest-path(v) // visit it if necessary

L[u] = max(L[u], 1 + L[v]) // update u’s longest path

}

}

Solution 3: Define P [u] to be the number of maximal paths that start at u. We apply DFS to
G and compute P [u] as we visit each vertex u. If u has no outgoing edges then P [u] = 1, which
counts the trivial path ⟨u⟩. Otherwise, observe that we can form every maximal path from u by
taking a maximal path from each of its neighbors, v, and prepending u to this path. Therefore, the
total number of maximal paths is the sum of P [v] for all neighbors v of u. The DFSvisit portion
of the algorithm is presented in the following code block. Clearly, the running time is O(n+m).

Number of maximal paths out of u
max-path-count(u) { // count maximal paths from u

mark[u] = discovered

if (Adj[u] == empty) P[u] = 1 // basis case - outdegree = 0

else { // u is a non-terminal

P[u] = 0

for each (v in Adj[u]) {

if (mark[v] == undiscovered)

max-path-count(v) // count paths from v

P[u] += P[v] // add to u’s path count

}

}

}

Solution 4: We present a simple greedy algorithm. We go as far as possible before stopping to
refuel. The variable lastStop indicates the location where we last got fuel. We find the farthest
station from this that is within 100 miles and get fuel there. The code block below provides a
sketch of the algorithm. To avoid subscripting out of bounds, let us assume that x[n+ 1] = x[n].

2

Greedy Algorithm for Refueling
fuel(x[1..n]) {

lastStop = 0

for (i = 1 to n) {

if (x[i+1] > lastStop + 100) { // will run out of gas before next station?

add i to refuel list

lastStop = x[i] // this was our last gas

}

}

}

Clearly the running time is O(n). Observe that this produces a feasible sequence, since we
never go more than 100 miles before stopping. To establish optimality, let F = ⟨f1, f2, . . . , fk⟩ be
the indices of an optimal sequence of refueling stops, and let G = ⟨g1, g2, . . . , gk′⟩ be the greedy
sequence. If the two sequences are the same, then we are done. If not, let i be the smallest index
such that gi ̸= fi. Because greedy algorithm selects the last possible gas station, we know that
gi > fi. Consider an alternative solution F ′ which comes by replacing fi with gi. We claim that F ′

is a also a feasible solution. To see this observe that sequence up to gi is the same as G (which we
know is feasible) and because we have delayed fueling, for the rest of the trip we have at least as
much gas as we had with F (which we know is feasible). The sequence F ′ has the same number of
stops as F and so is also optimal, and it has one more segment in common with G. By repeating
this, eventually we will have an optimal solution that is identical to G.

Solution 5:

(a) The counterexample involves two files, one slightly longer but with much higher access prob-
ability. Let (s1, p1) = (1, 0.1) and (s2, p2) = (2, 0.9). If we put f1 before f2 (size order), the
expected access cost is 1 · 0.1 + (2 + 1) · 0.9 = 2.8, but if we reverse the order of files the cost
is 2 · 0.9 + (1 + 2) · 0.1 = 2.1, which is smaller (see Fig. 1(a)).

(a) (b)

f1 :

f2 :

p1 = 0.1s1 = 1

s2 = 2 p2 = 0.9

f1 f2
Greedy:

Cost = 1 · 0.1 + (2 + 1) · 0.9 = 2.8

f1f2
Opt:

Cost = 2 · 0.9 + (1 + 2) · 0.1 = 2.1

f1 :

f2 :

p1 = 0.6s1 = 10

s2 = 1 p2 = 0.4

f1 f2
Greedy:

Cost = 10 · 0.6 + (10 + 1) · 0.4 = 10.4

Opt:

Cost = 1 · 0.4 + (1 + 10) · 0.6 = 7.0

f2 f1

Figure 1: Solution to Problem 2(a) and (b).

(b) The counterexample involves two files, one slightly more likely to be accessed but with much
larger size. Let (s1, p1) = (10, 0.6) and (s2, p2) = (1, 0.4). If we put f1 before f2 (decreasing
probability order), the expected access cost is 10 · 0.6+ (10+ 1) · 0.4 = 10.4, but if we reverse

3

the order of files the cost is 1 · 0.4 + (1 + 10) · 0.6 = 7.0, which is smaller (see Fig. 1(b)).

(c) Intuitively, it seems smart to store the most frequently accessed files at the front of the tape,
but it also makes sense to store the smallest files at the front of the tape. This suggests that
the best way to store the files is in increasing order of si/pi. Let us sort the files according
to this statistic and lay them out in this order. (We will make the simplifying assumption
that these ratios are distinct for all files.) To simplify notation, let us assume that the files
have been renumbered, so that s1/p1 < · · · < sn/pn. Clearly, this layout can be computed in
O(n log n) time.

We will prove that this is optimal by contradiction. Suppose that the optimum layout O is
different from the greedy layout. If so, there must be two consecutive files of the optimum
layout that are not in sorted order. That is, we have O = ⟨. . . , fj , fi, . . .⟩, where j > i
according to our greedy order. Thus, we have

sj
pj

> si
pi
, or equivalently (because sizes and

probabilities are both nonnegative), pjsi − pisj < 0.

fifj

fjfi

O:

O′:

Figure 2: Solution to Problem 2(c), swapping fj and fi.

Let us consider how the cost changes if these two files are swapped in the layout (see Fig. 2).
Call the resulting layout O′. After the swap, file fj has moved si units towards the back of
the tape, and so its individual access cost has increased by pjsi. Similarly, file i has moved
sj units closer to the front of the tape, so its individual access cost has decreased by pisj .
All the other files maintain their same placements on the tape, so there are no other changes
affecting the total cost. Therefore, the net change in the total access cost is:

T (O′)− T (O) = pjsi − pisj < 0.

Therefore, T (O′) < T (O), which contradicts the optimality of O, and yields the desired
contradiction.

Solution 6: Recall that for 0 ≤ i ≤ m and 0 ≤ j ≤ n, we define the prefix stringsXi = ⟨x1, . . . , xi⟩
and Yj = ⟨y1, . . . , yj⟩. For the same ranges of i and j, define lcsm(i, j) to be the maximum weight
achievable by matching Xi and Yj .

For the basis case, if either i or j is zero, then clearly no matches are possible, and so lcsm(i, j) =
0. Otherwise (both i and j are at least 1), there are three cases.

(a) If |xi − yj | ≥ 2, then no match is possible between these symbols, and hence either xi is not
used in the final match or yj is not used in the match. As in LCS, we have lcsm(i, j) =
max(lcsm(i− 1, j), lcsm(i, j − 1)).

(b) If |xi − yj | = 1, then it might be that this is the best match or it might be that we should
forgo this match in favor of finding a better match for either xi or yj (in case there may be
an exact match possible). In the first case, we increase the weight by 1 and consume by xi

4

and yj . Otherwise, we eliminate either xi or yj . We consider all the options and take the
best. Thus,

lcsm(i, j) = max

(
1 + lcsm(i− 1, j − 1), lcsm(i− 1, j), lcsm(i, j − 1)

)
.

(c) If xi = yj , then we claim that there is no harm in assuming that these symbols are matched
with each other. Suppose this were not so. If neither symbol is matched, then we could add
this match and increase the total weight. On the other hand, if one of the symbols is matched,
it must be matched earlier in the other sequence. By the subsequence structure, the other is
not matched. By replacing that match with the xi ↔ yj match, the total weight will either
remain the same or increase.

By matching these symbols, the total weight increases by +2 and we consume both xi and
yj , which implies lcsm(i, j) = 2 + lcsm(i− 1, j − 1). (By the way, it would also be correct to
include max(lcsm(i− 1, j), lcsm(i, j − 1)) as part of this case, it is just not necessary.)

Combining these observations, we have the following DP formulation.

lcsm(i, j) =


0 if i = 0 or j = 0,
max(lcsm(i− 1, j), lcsm(i, j − 1)) if i, j > 0 and |xi − yj | ≥ 2,
max(1 + lcsm(i− 1, j − 1),

lcsm(i− 1, j), lcsm(i, j − 1)) if i, j > 0 and |xi − yj | = 1,
2 + lcsm(i− 1, j − 1) if i, j > 0 and |xi − yj | = 0.

The final answer is lcsm(m,n). As with the standard LCS problem, this can be implemented to
run in O(mn) time.

Solution 7:

(a) Let vi be the cost of bottle i, and let bi denote the number of pills it holds. In order to place
W pills as inexpensively as possible, sort the bottles in increasing order of cost per pill, that
is, vi/bi. Then fill the bottles in this order, until all the pills are gone.

To show that this is optimal, define the incremental cost for a pill to be vi/bi, where i denotes
the bottle into which this pill was placed. Because we only pay for the portion of the bottle
that we use, the total cost of bottling all the pills is equal to the sum of the incremental costs
over all W pills. (This is important. For example, we can put a single pill into a last bottle,
without paying for the entire bottle.)

For a given input, let G denote the sorted order of incremental costs for the greedy solution,
and let O denote the sorted order of incremental costs for any optimal solution. We will use
the usual exchange argument to show that G achieves the same cost as O.

If G = O, we are done. Otherwise, consider the first pill (in sorted order of incremental
cost) where O differs from G. Let i denote the bottle into which G puts this pill, and let
i′ denote the bottle used by O. Since both sequences have been sorted, we know that O
does not put any more pills into bottle i, even though there is still space remaining there
(since G put this pill there). Since G places pills in increasing order of incremental cost,
it must be that vi/bi ≤ vi′/bi′ . Let us create a new bottling plan by moving this one pill

5

from bottle i′ to bottle i. The incremental change in cost by doing this is vi/bi − vi′/bi′ ≤ 0.
Therefore, the total cost cannot increase as a result of the change. (Since O is optimal, it
should not decrease.) By repeating this process, we will eventually convert O into G, while
never increasing the bottling cost. Therefore, G is optimal.

(b) For 0 ≤ i ≤ n, define P (i, w) to be the minimum amount paid assuming that we place w pills
using some subset of the first i bottles. For the basis case, observe that if w = 0 and i = 0,
we can trivially put the 0 pills in 0 bottles for a cost of 0, and thus P (0, 0) = 0. If W > 0,
then there is no solution using 0 bottles, and so we have P (0,W) =∞.

For the induction, let us assume that i ≥ 1. There are two cases. Either we do not use the
ith bottle or we do. If not, we put all w pills in the first i−1 bottles, for a cost of P (i−1, w).
Otherwise, we put min(bi, w) pills in this bottle, and put the remaining pills in the previous
i− 1 bottles. The total cost is vi + P (i− 1, w −min(bi, w)). We prefer the lower of the two
choices, which implies the following recursive rule:

P (0, w) =

{
0 if w = 0
∞ otherwise

P (i, w) = min(P (i− 1, w), vi + P (i− 1, w −min(bi, w)) for i ≥ 1.

Solution 8:

(a) Suppose that the coin values are the form {1, 3, 9, . . . , 3i, . . .}. The greedy algorithm simply
uses the coin of the largest value until the remaining value is smaller than this coin value.
For 0 ≤ i ≤ n, let gi denote the number of coins of value 3i. The algorithm generates the
maximum number of coins for the highest denomination and then decreases R by the amount
generated.

• Let i = ⌊log3R⌋, and let c = 3i. This is the smallest coin value that is less than or equal
to R

• Repeat the following while R > 0:

– While R ≥ c, add c to the list of change and set R← R− c.

– Set c← c/3.

Note that this will terminate, since eventually c = 1, and since R is an integer, it will
eventually be reduced to zero. It is also easy to see that it produces valid change, since each
time we add a coin of value c to the change, we reduce the remaining amount by c.

We will show that this greedy algorithm is optimal. We will prove this by induction on R.
For the basis case, R = 0, there is no change to be generated, and any system (including
greedy) is optimal. Otherwise, let c = 3i for i ≥ 0 be the largest coin denomination that is
less than or equal to R. Clearly, we cannot use any coins larger than c. We know that the
greedy algorithm will use at least one coin of value c. We assert that the optimal algorithm
must do the same. If so, both systems reduce R to R − c, and by induction, the remaining
generated change by greedy will be optimal.

To show the assertion, suppose to the contrary that the optimal algorithm does not generate
a coin of value c. This implies that it only use coins of values c/3 or smaller. These coin

6

denominations all evenly divide c, which implies that some subset of such coins sums to c.
Thus, greedy uses a single coin c and the optimum algorithm uses at least two or more to
generate this same amount c. Both systems have the same remainder R − c. Clearly, this
contradicts the presumed optimality.

(b) (This is not the smallest counterexample, but it really happened in history.) The old British
system had coins for 1 penny (1d), 3-pence (3d), 6-pence (6d), 10-pence (10d) and 1 shilling
which equals 12 pence (1s = 12d). To make 20d the greedy algorithm would use four coins
(a shilling, a 6-pence, and two pennies) whereas the optimum algorithm would use two coins
(two 10-pence).

Solution 9: We present a dynamic programming solution. An obvious first attempt at a DP
solution is to define an array P [i], which is the maximum profit attainable for weeks 1 through
i. The problem is that in order to update this array, we need to know where we were during the
previous week since we need to know whether we need to charge the $100 plane fare.

We will encode this extra conditional information by adding an additional parameter to control
for the location where the businessman spent the last week. Let DC = 0 and LA = 1. For
0 ≤ i ≤ n:

P [i,DC] = the max profit for weeks 1 through i, assuming week i is spent in DC

P [i, LA] = the max profit for weeks 1 through i, assuming week i is spent in LA.

Let’s see how to compute each of these arrays. For the basis case, because we start in DC, we
pay nothing in travel costs and so we have P [0, DC] = 0. On the other hand, if we want to start in
LA, we need to pay to get there, and thus, P [0, LA] = −100. (The problem states that you must
start in DC, and a valid way to interpret this constraint is to forbid starting in LA, which could be
done by setting P [0, LA] = −∞.)

In general, for i > 0, to compute P [i,DC], we consider two possibilities, depending on where we
spent our last week. If we spent it in DC, we don’t need to travel, and we obtain a profit of DC[i] on
top of whatever profit we accrued up to week i−1. Thus, we have P [i,DC] = DC[i]+P [i−1, DC].
On the other hand, if we were in LA last week, we need to pay the transportation costs, but we
still obtain the weekly DC profit and the accrued profit from the first i− 1 weeks. In this case we
have P [i,DC] = DC[i] + P [i− 1, LA]− 100. To maximize our profit we take the better of the two
options. This yields the following recursive rule for P :

P [i,DC] = DC[i] + max(P [i− 1, DC], P [i− 1, LA]− 100).

Symmetrically, to compute P [i, LA], we have the rule for P:

P [i, LA] = LA[i] + max(P [i− 1, LA], P [i− 1, DC]− 100).

Once we succeed in computing the values P [i,DC] and P [i, LA], for 0 ≤ i ≤ n, we return the value
P [n,DC] as the final result (because we want to end in DC.) An example is shown below. The
final result is P [5, DC] = $200.

Week 0 1 2 3 4 5

DC 40 10 20 5 110
LA 21 90 10 150 2

P [i,DC] 0 40 50 70 75 200
P [i, LA] −100 −79 30 40 190 192

7

Solution 10: Create an s-t network by making the root node r the source and creating a super-
sink node t, which will have edges coming from all the terminal nodes ti ∈ T . Observe that if
C = (X,Y) is any cut of the resulting s-t network, then removing the edges that cross the cut from
X to Y separates r from all the terminals. Therefore, this problem is equivalent to computing a
minimum weight cut in this network.

We can reduce this to a network flow problem. First, set all the capacities of all the nodes of the
network to 1 except the edges that enter t to capacity ∞, or more practically, any numeric value
that is larger than the maximum possible flow (see Fig. 3). Now, run any network flow algorithm
on the resulting network. Let f denote the resulting flow.

We compute the minimum cut as follows. First, construct the residual graph Gf , and determine
the subset of nodes X that are reachable from r, and let Y = V \X be the remaining nodes. Note
that none of the nodes of T can be reachable from r in Gf , for otherwise we could push more flow
through this terminal into t. Therefore, T ⊆ Y . By the max-flow/min-cut theorem, the edges (x, y)
of G that cross the cut (that is, where x ∈ X and y ∈ Y) define the minimum cut in G. Since
these edges are of capacity 1, the capacity of this cut is equal to the number of edges in the cut.
Therefore, this is the minimum number of edges needed to separate r from all the vertices of T .

r

G:

t4

t3

t2

t1

t

∞

∞

∞

∞

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

r

Flow f

t3

t2

t1

t

1

1

1

0

1

0
0

1

1

1

0

1

1
1

1

0

0

1
0

1

0

0

0
0

1

Gf :

r

t4

t3

t2

t1

t

1

1

1

∞

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

∞− 1

∞− 1

∞− 1

t4

r

Final cut edges

t4

t3

t2

t1

t

∞

∞

∞

∞

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

Figure 3: Eliminating edges to separated r from terminals.

Solution 11: As in class, we make the implicit assumption that there exists at least one path of
strictly positive capacity from s to t. (If not, the maximum flow is zero, and no edge is critical.)

We assert that any edge that crosses a minimum cut is critical. To see why, suppose that
(X,Y) is a minimum cut, and let (x, y) be any edge that crosses this cut for x ∈ X and y ∈ Y . The
capacity of the cut is the sum of capacities of all X-Y crossing edges, and so decreasing the capacity
of (x, y) decreases the capacity of the cut. By the Min-Cut/Max-Flow Theorem, decreasing the
minimum cut decreases the maximum flow value in the network.

To compute such an edge, we use the procedure suggested in the proof of the Min-Cut/Max-

8

Flow proof. First, compute the maximum flow f in the network (by any max-flow algorithm) and
then compute the residual network Gf for this flow. Let X denote the vertices that are reachable
from s in Gf , and let Y = V \X. (Since f is maximum, there is no s-t path in Gf , implying that Y
is nonempty). As shown in the min-cut/max-flow proof, (X,Y) is a cut of capacity |f |. Therefore,
any edge (x, y) where x ∈ X and y ∈ Y suffices.

9

