
CMSC 451:Spring 2025 Dave Mount

Solutions to Homework 3: Dynamic Programming and More

Solution 1: The final M and H matrices are shown in Fig. 1 along with the multiplication order.

• M [1, 3]: The choices are M [1, 1] +M [2, 3] + 2 · 2 · 3 = 42 or M [1, 2] +M [2, 3] + 2 · 5 · 3 = 50.
The first is better, and we set M [1, 3] = 29 and H[1, 3] = 1.

• M [2, 4]: The choices are M [2, 2] +M [3, 4] + 2 · 5 · 1 = 25 or M [2, 3] +M [4, 4] + 2 · 3 · 1 = 36.
The first is better, and we set M [2, 4] = 25 and H[2, 4] = 2.

• M [1, 4]: The choices are M [1, 1] +M [2, 4] + 2 · 2 · 1 = 29, M [1, 2] +M [3, 4] + 2 · 5 · 1 = 45, or
M [1, 3]+M [4, 4]+2 ·3 ·1 = 48. The first is the best, and we set M [1, 4] = 29 and H[1, 4] = 1.

29

25

15

0000

20

42

30

1

2

31

1

2

1

2

3

4

4

3

2

1

j i

M [i, j]

2 2 5 3 1

p0 p1

A1
p2

A2
p3

A3
p4

A4

4

3

2

j 1

2

3

i

H [i, j]

1

2

3
A2 A3 A4A1

cost:

2 · 2 · 1 = 4

2 · 5 · 1 = 10

5 · 3 · 1 = 15

total: 29

Figure 1: Chain-matrix multiplication.

To get the final multiplication order we see that H[1, 4] = 1, so we multiply A1(A2 · A3 · A4).
We continue with H[2, 4] = 2, so this leaves A1(A2(A3 ·A4)). The tree is shown in the figure.

Solution 2: For 0 ≤ j ≤ n, let MP(j) denote the smallest achievable max-penalty for typesetting
the first j words. Ultimately, we want to compute MP(n). For the basis case we have MP(0) = 0,
since there is nothing to lay out and hence there is no penalty involved. Let us assume we have
access to a utility function len(i, j), which, for 1 ≤ i ≤ j ≤ n, returns the sum of word lengths∑j

k=1wk. (See the challenge problem for how this can be done.)

(a) To compute MP(j) observe that wj will be the last word on the last line of the layout, but
what is the first word of this line? It will be some word wi, where 1 ≤ i ≤ j and len(i, j) ≤ L.
Assuming this, the penalty associated with this line will be L−len(i, j). Assuming that we lay
out the remaining words w1 through wi−1 in the best possible manner, the remaining penalty
is MP(i − 1). (Observe that the principle of optimality holds here.) The overall penalty is
the maximum of these quantities, that is, max(L− len(i, j),MP(i− 1)). Among the available
options, we select the one that produces the lowest value. Thus, we have

MP(j) =


0 if j = 0
min

1≤ i≤ j

len(i,j)≤L

max(L− len(i, j),MP(i− 1)) otherwise.

1

This solution involves a 1-parameter function, but requires a loop to determine the best split.
Another approach (which yields the same running time, but takes more space) is based on
a 2-parameter function. For 1 ≤ i ≤ j ≤ n, let MP′(i, j) denote the smallest achievable
max-penalty for typesetting the first j words, under the assumption that the last line starts
on or before wi. The final answer will be MP′(n, n). To avoid dealing with cases where the
total word length exceeds the line length, let us define

penalty(i, j) =

{
L− len(i, j) if len(i, j) ≤ L
∞ otherwise

For the basis case, observe that if i = 1, then we are putting all the words on a single line,
and the overall penalty is penalty(i, j). Otherwise, i ≥ 2. Either the last line starts with
wi, in which case the penalty for this last line is penalty(i, j). The remaining subproblem is
to typeset the first i − 1 words, which is MP′(i − 1, i − 1). The overall max-penalty is the
maximum of these two. Otherwise, the last line starts earlier than wi (or equivalently, on or
before wi−1), in which case the overall penalty is given by MP′(i− 1, j). As always, we take
the better of these two options.

MP′(i, j) =

{
penalty(i, j) if i = 1
min(max(penalty(i, j),MP′(i− 1, i− 1)),MP′(i− 1, j)) otherwise.

Note that once len(i, j) exceeds L, MP′(i, j) will be ∞, thus if we were to implement this, we
could add this additional check to avoid unnecessary recursive function calls.

(b) We present a memoized implementation in the code block below. (A bottom-up implemen-
tation is also quite straightforward). We assume that the array pred[1..n] has been pre-
computed, and we have access to the function len(i, j). The values are stored in the array
MP[0..n], which is initialized to −1. The initial call is max-penalty(n), which computes the
minimum-penalty segmentation of all n words.

Memoized Typesetting with Max Penalty
max-penalty(j) { // max-penalty typesetting

if (MP[j] == -1) { // undefined?

if (j == 0) { // basis case

MP[0] = 0

} else {

MP[j] = infinity

for (i = j downto 1) { // try all possible splits

if (len(i,j) > L) break // too many words for this line

thisPenalty = L - len(i,j) // penalty for last line

prevPenalty = max-penalty(i-1) // penalty for prev lines

MP[j] = min(max(thisPenalty, prevPenalty))

}

}

}

return MP[j] // return the max penalty

}

2

Clearly, there are n + 1 values MP[0..n] to be computed, and each one involves minimizing
over O(n) possibilities. If we can compute len(i, j) runs in constant time, the overall time is
O(n2).

(c) Let’s assume that the array MP[0..n] has been computed in part (b). We know that the last
line contains words wj through wn, where pred[n] ≤ j ≤ n. This implies that the previous
lines contain the first j − 1 words, and the penalty for these lines is MP[j − 1]. Thus, the
minimum overall penalty (ignoring the last line) is:

min
pred[n]≤j≤n−1

MP[j − 1].

Assuming MP has been computed, this takes additional O(n) time to execute. So, the overall
time is O(n2).

Solution 3:

(a) We claim that given n defects, there will be n+ 1 subchips. The proof by (strong) induction
on n. The basis (n = 0) is trivial (zero defects and one chip). The first cut eliminates one
defect. Suppose there are n1 and n2 defects remaining in the interiors of the two resulting
subrectangles. We have n1 + n2 = n− 1. By the induction hypothesis, cutting these results
in n1 + 1 and n2 + 1 subchips, respectively. Combining these, we have a total of

(n1 + 1) + (n2 + 1) = (n1 + n2) + 2 = (n− 1) + 2 = n+ 1

subchips, as desired.

(b) The subproblems are the possible rectangles within the original chip. Let’s assume that we
have sorted the x-coordinates of the points in ascending order x1 ≤ · · · ≤ xn and the same for
the y-coordinates y1 ≤ · · · ≤ yn. Let’s add two additional coordinates to each list to cover the
sides of the enclosing square by defining x0 = y0 = 0 and xn+1 = yn+1 = L (see Fig. 2(a)).
As a convenience, let us assume we have access to a geometry query defectCount(i, i′, j, j′),
which returns a count of defects in the interior of the rectangle [xi, xi′]× [yj , yj′].

L

L

x1

y1

x2 x3 x4 x5

y2

y3
y4

y5

y0

y6

x0 x6 xi xi′

yj

yj′

xi xi′

yj

yj′

xi′′

yj′′yj′ − yj

xi′ − xi

(a) (b) (c)

Figure 2: Chip cutting for n = 5.

Given 0 ≤ i < i′ ≤ n+1, and 0 ≤ j < j′ ≤ n+1, define C(i, i′, j, j′) to be the minimum total
cost of any hierarchical cutting of the rectangle [xi, xi′] × [yj , yj′]. Ultimately, our objective
is to cut the entire chip, that is, C(0, n+ 1, 0, n+ 1).

3

In order to compute C(i, i′, j, j′) we first observe the basis case that if this subrectangle has
no defects in its interior, that is, defectCount(i, i′, j, j′) = 0, then it does not need to be cut,
and hence its cost is zero. (Another possible basis case would be when i′ = i + 1 or j′ = j′,
but we assert that before we get to this point, we will encounter the defect-count basis case,
since such a rectangle cannot contain any defects in its interior.)

Otherwise, we will need to apply either a vertical or horizontal cut.

• We can make a vertical cut between xi and xi′ , by considering all cuts through xi′′ ,
where i < i′′ < i′. This generates a cutting cost of yj′ − yj and yields two subrectangles
whose total cost we compute recursively as C(i, i′′, j, j′) + C(i′′, i′, j, j′) (see Fig. 2(b)).
Thus, we have

costx(i, i
′, j, j′) = (yj′ − yj) + min

i<i′′<i′
C(i, i′′, j, j′) + C(i′′, i′, j, j′).

• Otherwise, we make a horizontal cut between yj and yj′ , by considering all cuts through
yj′′ , where j < j′′ < j′. This generates a cutting cost of xi′′ − xi and yields two
subrectangles whose total cost we compute recursively as C(i, i′, j, j′′) + C(i, i′, j′′, j′)
(see Fig. 2(c)).

costy(i, i
′, j, j′) = (xi′ − xi) + min

j<j′′<j′
C(i, i′, j, j′′) + C(i, i′, j′′, j′).

Observe that the principle of optimality holds, which means that when cutting the two sub-
rectangles, we should do so in a manner that minimizes the total cutting costs. Combining
these, we have the following recursive rule:1

C(i, i′, j, j′) =


0 if defectCount(i, i′, j, j′) = 0

min

(
costx(i, i

′, j, j′)
costy(i, i

′, j, j′)

)
(otherwise).

The overall cost is C(0, n+1, 0, n+1), which covers the entire rectangle [x0, xn+1]×[y0, yn+1] =
[0, L]× [0, L].

(c) We present a memoized solution. Each call to min-split(i, i’, j, j’) computes the
value of C(i, i′, j, j′) (if it has not already been computed) and then saves this value in the 4-
dimensional array C. Initially, all the entries are set to −1 to indicate that they are undefined.
The initial call is min-split(0, n+1, 0, n+1). This is presented in the code block below.

(d) There are (n+ 2)4 = O(n4) entries in array C. (A more refined analysis reveals that we only
access roughly (n + 2)4/4 of the entries, since i ≤ i′ and j ≤ j′, but this does not affect the
asymptotic values.) The number of iterations through each of the for-loops is at most n, and
therefore the overall running time is O(n5).

1There is something obviously wasteful about this formulation. When making the vertical cut at xi′′ , we did not
bother to check that the point having this x-coordinate even lies within the rectangle [xi, xi′]× [yj , yj′]! (The same
applies for yj′′ .) It turns out the sloppiness does not adversely affect the correctness nor the asymptotic running
time. To see why, observe first that any such cut will not be helpful in forming the optimum solution, since the cut
does not pass through a defect, and hence it does not reduce the number of defects. It can also be shown that, even
if we consider only points lying within the rectangle, the running time will be O(n5), only with a smaller constant.
(I believe that the constant factor will be about 5! = 120.) Thus, while it is wasteful from a practical perspective, if
we are wearing our “theoretician pants”, we just don’t care.

4

Memoized Chip Decomposition
min-split(i, i’, j, j’) { // computes C(i, i’, j, j’)

if (C[i, i’, j, j’] == -1) { // not yet defined?

if (defectCount(i, i’, j, j’) == 0) // no more defects

C[i, i’, j, j’] = 0

else { // need to split

best = +infinity

for (i’’ = i to i’) // try all vertical cuts

best = min(best, (y[j’] - y[j]) +

min-split(i, i’’, j, j’) + min-split(i’’, i’, j, j’))

for (j’’ = j to j’) // try all horizontal cuts

best = min(best, (x[i’] - x[i]) +

min-split(i, i’, j, j’’) + min-split(i’, i, j’’, j’))

C[i, i’, j, j’] = best // take the best of all

}

return C[i, i’, j, j’]

}

Solution 4:

(a) The residual network Gf is shown in Fig. 3(a).

(a) Residual Gf and s-t path

s

a

d

c

1

b t
22

2 5

3

3

2 3

3

(b) Updated flow f ′ (|f ′| = 9)

s

a

d

cb t

(c) Updated residual Gf ′

s

a

d

cb t

(s, d, and c are reachable)

(d) Cut of capacity 9

s

a

d

cb t

X Y

3

6

4

1 1

3/3

4/8 1/1

0/32/2

5/7
2/2 0/5

0/3 3/4

3/3

1

32

2 5

1

3

4 3

3
3

4

4

3

3

8 1

32

7
2 5

3 4

3

Figure 3: Solution to Problem 1.

(b) There is only one s-t path, and it is highlighted with heavy blue edges in Fig. 3(a). The
maximum flow that can be pushed through this path is 2.

5

(c) The updated flow is shown in Fig. 3(b) and the updated residual network Gf ′ is shown in
Fig. 3(c).

(d) There is no path from s to t in the Gf ′ . (The vertices that are reachable from s are shaded.)
It follows that this flow is maximum. Its value is the sum of the flow values out of s, which
is 3 + 2 + 4 = 9.

(e) The flow from (c) was already maximum, so the residual graph is the same as for part (c).

(f) As shown in the Min-Cut/Max-Flow Theorem, a minimum cut (X,Y) results by setting X
to the nodes of the residual reachable from s and setting Y to the rest. This yields the cut
(X,Y) = ({s, c, d}, {a, b, t}), as shown in Fig. 3(d). The capacity of the cut is equal to the
sum of capacities of edges crossing from the X side to the Y side, which is 3 + 2+ 3+ 1 = 9,
which matches |f ′|. (Note that the edges from Y to X play no role in the cut’s capacity.)

Solution 5:

(a) We convert a vertex-capacitated network G = (V,E) into an equivalent edge-capacitated
network G′ = (V ′, E′) as follows. First, we split each u ∈ V vertex other than s into t vertex
into a pair of vertices u′, u′′ ∈ V ′, which are connected by a “mini-edge”. This mini-edge has
a capacity equal to the vertex capacity. Let s′′ and t′ denote the source and sink vertices in
G′. Next, for each edge (u, v) in the original graph, create an edge (u′′, v′) of infinite capacity
in your new network (see Fig. 4(b)).

9

7

4

8

5

10

(b)

s′′ t′s t
18

9

7

4

8

5

10
16

(a)

G G′

∞

∞

∞

∞∞

∞

∞
∞

∞

∞

∞∞

u u′

u′′

2

0

4

1

5

6/8
2

0

4

1

5

u

u′ u′′

(c)

8

Figure 4: Solution to Problem 5(a).

To establish correctness, we show that given any flow f in G there exists a flow of equal
value in G′. To go from G to G′, we just copy the flow values from each edge (u, v) to the
corresponding edge (u′′, v′). We set the flow on the mini-edge to the sum of flows on the
incoming edges. By flow conservation this must match the sum of flows on the outgoing
edges (see Fig. 4(c)). The capacity on the mini-edge enforces the vertex capacity. To go in
the other direction, we copy the flows on the edges (u′′, v′) to the original edge (u, v). Because
of the capacity constraint on the mini-edges, the flow through each vertex satisfies the vertex
capacities.

(b) We convert an edge-capacitated network G = (V,E) into an equivalent vertex-capacitated
network G′ = (V ′, E′) as follows. We split each edge into two edges by adding a “mini-
vertex” in the middle. We set the capacity of the mini-vertex to the capacity of the edge. We
set the capacities of the original vertices to ∞ (see Fig. 5(b)).

6

(b)

s t

(a)

G G′

6

7

5

2

3 8

1

5
4

8

11

7
s

t
6

7

5

2

3

1

8

5

8

4
11

7

∞

∞

∞

∞
∞

∞

u v

(c)

u v

66

6/8

8

Figure 5: Solution to Problem 5(b).

To establish correctness, we show that given any flow f in G there exists a flow of equal value
in G′. To go from G to G′, we just copy the flow value on each edge (u, v) to the two halves
of the split edge. We set the flow on the two edges to be the same as the flow in the original
edge (see Fig. 5(c)). The capacity on the mini-vertex enforces the edge capacity constraint.
To go in the other direction, observe that the flows on the two copies of each split edge are
equal, and we copy the flow to the original edge (u, v).

Solution to Challenge Problem 1: This employs a standard trick, called prefix sums. Compute
an array P [0..n], where P [i] is equal to the ith prefix sum, that is, P [i] =

∑i
i=1wi. This can be

computed in O(n) time by setting P [0]← 0 and for 2 ≤ i ≤ n, P [i]← P [i− 1]+wi. Clearly, it can
be stored in O(n) space. To compute len(i, j) we return P [j]− P [i− 1], since

len(i, j) =

j∑
k=i

wk =

j∑
k=1

wk −
i−1∑
k=1

wk = P [j]− P [i− 1].

Solution to Challenge Problem 2: The solution to this problem is similar in spirit to the
the first challenge problem. For each pair of indices [i, j], we compute the block sum of the entries
whose indices are less than or equal to both i and j. For 0 ≤ i, j ≤ n, define

P [i, j] =
i∑

i′′=1

j∑
j′′=1

M [i′′, j′′].

This array can be computed in O(n2) in the same incremental manner as in Challenge Problem 1.
Now, we can compute any block sum for the subarray [i, i′]× [j, j′] by taking

blockSum(i, i′, j, j′) = P [i′, j′]− P [i, j′]− P [i′, j] + P [i, j]

(see Fig. 6). To see why this works, observe that P [i′, j′] sums all the entries in the submatrix
whose lower-right corner is [i′, j′], from which we subtract the submatrices to its left and above
with P [i′, j] and P [i, j′], respectively. However, this doubly subtracts the elements of the submatrix
whose lower-right corner is [i, j], so to compensate we add in P [i, j].

7

j′j

i

i′

−

+

+

−

0
0

P :

Figure 6: Block sum in a matrix.

8

