
CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Java I/O – Part 1: Text Files

Department of Computer Science
University of Maryland, College Park

Text Files
• Text Files

1. Data represented in human-readable form.
2. Example: Java source code files (.java).
3. Can be edited and manipulated using a text editor (e.g.,

Notepad, VS Code).
4. Characters are stored in a specific encoding format (e.g., UTF-8,

ASCII).
5. Text I/O provides abstraction by encoding/decoding characters

(e.g., FileReader, BufferedReader in Java).

© 2025 Dept of Computer Science UMD 2

Binary Files
• Binary Files

1. Data is stored as a sequence of bytes (non-human-readable).
2. Designed to be read and interpreted by programs, not humans.
3. More compact than text files because no encoding/decoding is

required.
4. More efficient for storing large amounts of data (e.g., images,

audio, video, compiled programs).
5. Note: All files are ultimately stored in binary format at the

hardware level, regardless of type (text or binary).
• Key Difference

• Text I/O involves character encoding and decoding, which adds
overhead, while Binary I/O directly manipulates raw bytes for faster
and more efficient data handling.

TODAY WE WILL TALK ABOUT TEXT FILES

© 2025 Dept of Computer Science UMD 3

Classes for Text File I/O in Java
• Java provides Readers and Writers for handling text-

based data. These classes work with characters instead
of raw bytes and handle encoding/decoding
automatically.

• Key Classes (from java.io package):
1.Reading Text Files:

1. FileReader – Reads characters from a file.
2. BufferedReader – Wraps FileReader for efficient reading (reads

larger chunks at once).
2.Writing Text Files:

1. FileWriter – Writes characters to a file.
2. BufferedWriter – Wraps FileWriter to improve performance.
3. PrintWriter – Provides convenient methods for formatted text

output.

© 2025 Dept of Computer Science UMD 4

• Why Use Readers/Writers?
• ✔ Handle character encoding (e.g., UTF-8, ASCII)

automatically.
✔ More convenient than byte-based streams for text
processing.
✔ Buffered versions improve efficiency by reducing direct
disk access.

© 2025 Dept of Computer Science UMD 5

Classes for Text File I/O in Java

The File Class in Java
• The File class (from java.io) encapsulates file and directory properties but does not

handle reading or writing file content. It is mainly used for file management operations.
• Key Features:
• Represents a file or directory path.
• Checks for file existence and properties.
• Performs file and directory operations (create, delete, rename, etc.).
• Note: The File class only represents file metadata—it does not provide methods for reading

or writing file content. For that, use FileReader, BufferedReader, FileWriter, etc

Example: FileExample.java

© 2025 Dept of Computer Science UMD 6

Method Description
exists() Checks if the file or directory exists.
delete() Deletes the file or directory.
createNewFile() Creates a new empty file (if it doesn’t already exist).
isFile() /
isDirectory()

Checks whether it’s a file or directory.

getName() Returns the file name.
length() Returns the file size (in bytes).
renameTo(File
dest)

Renames the file/directory.

FileReader – Basic Character-Based File Reading
• FileReader – Basic Character-Based File Reading

• The FileReader class (from java.io) is used to read characters one at a time from a
text file. It provides a simple way to process character streams, but it is not the most
efficient method for large files.

• Key Features:
• Reads text files character by character.

Handles Unicode characters automatically.
Works with BufferedReader for improved efficiency.

• Limitations:
• Not efficient for large files – It reads one character at a time, leading to frequent

disk access.
No buffering – Use BufferedReader for better performance.

Example: FileReaderEx.java

© 2025 Dept of Computer Science UMD 7

Method Description

read() Reads a single character and returns its ASCII
value (or -1 if EOF is reached).

close() Closes the file and releases system resources.

BufferedReader – Efficient Text File Reading in Java
• BufferedReader Overview

• BufferedReader is a Java class used for reading text from character-
input streams.

• Buffers characters to improve performance, reducing the number of
read operations.

• Efficient for reading large files or multiple lines of text.
• Key Methods of BufferedReader

• readLine()
• Reads an entire line from the file.
• Returns null when the end of the file is reached.

• close()
• Closes the stream and releases system resources.

• Why Use BufferedReader Instead of FileReader?
• FileReader reads one character at a time, which can be slow for large

files.
• BufferedReader reads larger chunks of data at once, making it faster

and more efficient. Example: BufferedReaderEx.java

© 2025 Dept of Computer Science UMD 8

Scanner – Token-Based Text File Reading in Java
• Scanner Overview

• Scanner is a Java utility class used for reading and parsing text input.
• Breaks input into tokens (words, numbers, etc.), using whitespace as the default

delimiter.
• Useful for structured input where data needs to be processed in chunks.

• Key Methods of Scanner
• hasNext() → Checks if more input is available.
• next() → Reads the next token as a String.
• nextInt() → Reads the next token as an int.
• nextDouble() → Reads the next token as a double.
• close() → Closes the scanner to release system resources.

• Why Use Scanner for File Reading?
• Provides built-in parsing for different data types (e.g., int, double).
• Handles whitespace-based tokenization automatically.
• Easier than manually parsing text from BufferedReader.

Example: ScannerParallelArrays.java

© 2025 Dept of Computer Science UMD 9

FileWriter – Writing Text to Files in Java
• FileWriter Overview

• FileWriter is used for writing characters to a file.
• It writes data in character form, unlike FileOutputStream, which writes

bytes.
• Designed for writing text (not binary data).
• Writes data to a file or stream. If the file does not exist, it is created.

• Key Methods of FileWriter
• write(int c)

• Writes a single character (as an integer).
• Converts the integer value to its corresponding character and writes

it to the file.
• Returns void.

• close()
• Closes the file stream and releases system resources.
• Always call close() to prevent resource leaks.

• Why Use FileWriter?
• Ideal for simple text file writing.
• Better than OutputStreamWriter when dealing with character data.
• Allows writing individual characters or strings.

© 2025 Dept of Computer Science UMD 10

See: FileWriterEx

BufferedWriter in Java
• Purpose: Writes text efficiently to a character-output

stream by buffering characters.
• Advantages:
• Reduces the number of I/O operations by writing data in

chunks.
• Improves performance compared to writing character by

character.
• Key Methods:
• write(String s): Writes a string to the file.
• newLine(): Writes a platform-dependent newline character.
• flush(): Forces any buffered data to be written immediately.
• close(): Closes the writer and releases system resources.

© 2025 Dept of Computer Science UMD 11

See:
BufferedWriterEx

PrintWriter in Java
• Purpose: Used to write formatted text to files or other

output streams.
• Advantages:
• Provides convenient methods for writing text data.
• Supports automatic flushing when used with System.out.
• Allows formatted output similar to System.out.printf().
• Key Methods:
• print(String s): Writes text without a newline.
• println(String s): Writes text followed by a newline.
• printf(String format, Object... args): Writes formatted text.

© 2025 Dept of Computer Science UMD 12

See: PrintWriterEx

