
CMSC 132: 
OBJECT-ORIENTED PROGRAMMING II

List Interface and the Vector Class

Department of Computer Science
University of Maryland, College Park



Introduction to the List Interface
What is the List Interface?
• The List interface in Java is part of the Java 

Collections Framework (JCF).
• Represents an ordered collection (also called a 

sequence) of elements.
• Allows duplicates and provides precise control over 

where each element is inserted.
• Serves as the Abstract Data Type (ADT) 

representation for a list in Java.

© 2025 Dept of Computer Science UMD 2



Introduction to the List Interface
• ArrayList, Vector, and Stack are all implementations of 

the List interface.
• ArrayList: A widely used implementation backed by a 

dynamic array. (We saw this in lecture)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html

• Vector: Similar to ArrayList, but grows dynamically by a 
larger factor and is synchronized. (We will learn about 
this today)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html

• Stack: Extends Vector and represents a stack (LIFO) 
data structure. (We saw this in lecture)

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Stack.html

© 2025 Dept of Computer Science UMD 3

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Stack.html


Characteristics of the List Interface
• Order: Elements in a List are maintained in the order 

they were inserted.
• Indexing: Elements can be accessed using an index 

(similar to arrays).
• Common Operations:add(), get(), remove(), size(), 

clear(), contains()

© 2025 Dept of Computer Science UMD 4



Vector Class Overview
What is a Vector?
• A resizable array implementation of the List interface.
• Grows dynamically as elements are added (typically by 

doubling its size).
• Synchronized: Threads can safely modify a Vector 

concurrently.
Key Characteristics of Vector:
• Size Growth: When the vector is full, it grows by 100% 

(doubling in size) by default.
• Legacy Class: Originally part of the Java 1.0 version, 

now considered outdated for many use cases (replaced 
by ArrayList).

© 2025 Dept of Computer Science UMD 5



Comparing Vector vs ArrayList

© 2025 Dept of Computer Science UMD 6

Feature Vector ArrayList

Synchronized Yes (thread-safe) No (not thread-safe)

Growth Policy Doubles the size when full Increases size by 50% by 
default

Performance Slower due to synchronization 
overhead

Faster (no synchronization)

Default Size 10 elements 10 elements

Resizing Behavior Growth factor is 100% Growth factor is 50%

Legacy Status Legacy (older version of List) Preferred modern 
implementation



Methods Unique to Vector, ArrayList, and Stack

• Methods in Vector (not in List interface):
• addElement(E obj): Adds an element to the vector (replaces add()).
• elementAt(int index): Retrieves an element at the specified index.
• removeElement(Object obj): Removes the first occurrence of the specified 

element.
• capacity(): Returns the current capacity of the vector.
• trimToSize(): Resizes the vector to the current size.

• Methods in ArrayList (not in List interface):
• ensureCapacity(int minCapacity): Ensures that the list can hold at least the 

specified number of elements.
• trimToSize(): Reduces the size of the internal array to match the number of 

elements.
• Methods in Stack (not in List interface):

• push(E item): Pushes an item onto the stack.
• pop(): Removes and returns the top element from the stack.
• peek(): Returns the top element without removing it.

© 2025 Dept of Computer Science UMD 7



Use Cases for Each Implementation
• ArrayList:

• Most commonly used for general-purpose storage when 
synchronization is not required.

• Ideal for random access and when list sizes fluctuate but are 
generally not large.

• Vector:
• Used in legacy code or situations where synchronization is required 

and performance is not a major concern.
• Less commonly used today in favor of ArrayList and 

CopyOnWriteArrayList (for thread-safety).
• Stack:

• Used when the application needs to follow Last In First Out (LIFO) 
behavior.

• Ideal for situations like undo/redo functionality or parsing 
expressions.

© 2025 Dept of Computer Science UMD 8



When to Use Each Class
• Use ArrayList:

• When you need a general-purpose list and thread safety is not a 
concern.

• When you need fast access to elements and the list size may 
change frequently.

• Use Vector:
• When you require thread-safe behavior (though ArrayList with 

external synchronization is a better choice in modern applications).
• For legacy applications that still rely on Vector.

• Use Stack:
• When your use case requires stack behavior (LIFO order), such as 

function calls or undo/redo operations.
See list package in LabWeek3 Project

© 2025 Dept of Computer Science UMD 9


