CMSC 132:
OBJECT-ORIENTED PROGRAMMING I

«ersin, - Gomparator Interface

5‘ S, O,
18 56
2, S Department of Computer Science

TRYLN University of Maryland, College Park




© 2025 Dept of Computer Science UMD 2

Introduction to the Comparator Interface

- What is Comparator?
- Comparator is an interface in Java used to define
custom orderings of objects.

https://docs.oracle.com/en/javal/javase/17/docs/api/java.base/java/util/Comparator.html
- Unlike the Comparable interface, which is implemented

by the class itself, Comparator is a separate class or
object that defines the order of objects.

- API for Comparable as seen in lecture:

https://docs.oracle.com/en/javal/javase/17/docs/api/java.base/javal/lang/Comparable.html



https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

© 2025 Dept of Computer Science UMD R

Comparable vs Comparator

Defines a natural order Defines a custom order
Purpose : :
for objects. for objects.
Method Implemented compareTo(T o) compare(T o1, T 02)
When the class has a When different orderings
Use Case )
single natural order. are needed.
Typically implemented in Can be created as a
the class. separate object.
S Less flexible, only one More flexible, allows
Flexibility : : :
comparison method. multiple orderings.

More flexible and
Key Advantage Simple and efficient. reusable for different
comparisons.




© 2025 Dept of Computer Science UMD 4

Key Differences Between Comparable
and Comparator

- Comparable:

Modifies the class itself to define the natural ordering of its
objects.

- compareTo method is used for comparison.

- Comparator:

- Can be used to create multiple custom orderings without
modifying the class.

- compare method is used for comparison.



© 2025 Dept of Computer Science UMD 5

When to Use Comparable vs Comparator

Use Comparable when:
- You want a class to have a default or natural order.

- The class only needs one way of being compared (e.g.,
ascending order).

Use Comparator when:

- You want to define multiple ways of comparing objects
(e.g., ascending or descending order).

- You don't have access to the source code of the class
(e.g., comparing objects from external libraries).

See compare package in LabWeek3 Project




