
CMSC 132: 
OBJECT-ORIENTED PROGRAMMING II

Comparator Interface

Department of Computer Science
University of Maryland, College Park



Introduction to the Comparator Interface
• What is Comparator?

• Comparator is an interface in Java used to define 
custom orderings of objects.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html

• Unlike the Comparable interface, which is implemented 
by the class itself, Comparator is a separate class or 
object that defines the order of objects.

• API for Comparable as seen in lecture:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html

© 2025 Dept of Computer Science UMD 2

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Comparator.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Comparable.html


Comparable vs Comparator

© 2025 Dept of Computer Science UMD 3

Feature Comparable Comparator

Purpose Defines a natural order 
for objects.

Defines a custom order 
for objects.

Method Implemented compareTo(T o) compare(T o1, T o2)

Use Case When the class has a 
single natural order.

When different orderings 
are needed.

Usage Typically implemented in 
the class.

Can be created as a 
separate object.

Flexibility Less flexible, only one 
comparison method.

More flexible, allows 
multiple orderings.

Key Advantage Simple and efficient.
More flexible and 
reusable for different 
comparisons.



Key Differences Between Comparable 
and Comparator
• Comparable:

• Modifies the class itself to define the natural ordering of its 
objects.

• compareTo method is used for comparison.

• Comparator:
• Can be used to create multiple custom orderings without 

modifying the class.
• compare method is used for comparison.

© 2025 Dept of Computer Science UMD 4



When to Use Comparable vs Comparator
Use Comparable when:
• You want a class to have a default or natural order.
• The class only needs one way of being compared (e.g., 

ascending order).
Use Comparator when:
• You want to define multiple ways of comparing objects 

(e.g., ascending or descending order).
• You don't have access to the source code of the class 

(e.g., comparing objects from external libraries).
See compare package in LabWeek3 Project

© 2025 Dept of Computer Science UMD 5


