
CMSC 132: 
OBJECT-ORIENTED PROGRAMMING II

PriorityQueue in JCF
Department of Computer Science
University of Maryland, College Park



What is a Priority Queue?
• A Priority Queue is a special type of queue where elements 

are dequeued in order of priority, not just FIFO (first-in-first-
out).

• Each element has a priority, and the element with the highest 
or lowest priority is removed first.

• Internally, most implementations use a heap data structure.
• Key Concepts:
• The priority queue arranges elements so that the one with the highest 

(or lowest) priority is always accessible at the front — regardless of 
when it was added.

• Common operations: insert, peek, remove
• Not designed for keeping the entire queue sorted at all times—it's 

optimized for fast access to the highest (or lowest) priority 
element, not for sorted iteration.

© 2025 Dept of Computer Science UMD 2



How Priority Queues Work
• Think of a to-do list where each task has urgency:

• "Finish project" (high priority)
• ”Watch TV" (low priority)

• A priority queue ensures "Finish project" is handled first, 
even if ”Watch TV" was added earlier.

• Under the hood:
• Typically implemented as a binary heap.
• Min-heap: smallest element dequeued first.
• Max-heap: largest element dequeued first (via custom 

comparator).

© 2025 Dept of Computer Science UMD 3



PriorityQueue in Java
• java.util.PriorityQueue<E>
• Part of the Java Collections Framework
• Based on a min-heap by default (natural ordering of elements)
• Requires elements to be Comparable or use a custom Comparator

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html

• Constructors:
PriorityQueue<>();
PriorityQueue<>(Comparator<? super E> comparator);
PriorityQueue<>(Collection<? extends E> c);

• Common methods:
add(E e), offer(E e) – insert
peek() – view head
poll() – remove head
remove() – remove head

© 2025 Dept of Computer Science UMD 4

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html


Behavior and Use Cases
• Default Behavior:
• Orders using compareTo() method (natural ordering)
• For objects, you must implement Comparable, or provide a 

Comparator
• Use Cases:
• Scheduling jobs by urgency
• Handling tasks in simulation engines
• Dijkstra’s shortest path algorithm
• Event-driven systems (e.g., event queues)

© 2025 Dept of Computer Science UMD 5



Customizing Priority
Custom comparator examples:

• Max-heap of integers:
PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);

• Custom object (e.g., Task with priority): 
 Provide a Comparator<Task> to sort by priority field.

See Code Examples In this order:
PriorityQueueDemo, MaxHeapDemo, TaskManager, 

ERQueue

© 2025 Dept of Computer Science UMD 6


