
CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Quick Sort

Department of Computer Science
University of Maryland, College Park

Introduction to Quick Sort
• Quick Sort is a divide-and-conquer sorting algorithm.
• It was developed by Tony Hoare in 1959.
• It works by:

• Choosing a pivot
• Partitioning the array into two sub-arrays:

• Elements less than the pivot
• Elements greater than the pivot

• Recursively sorting the sub-arrays

© 2025 Dept of Computer Science UMD 2

Why Use Quick Sort?
• Fast in practice: Average time complexity is O(n log n)
• In-place sorting: Requires only O(log n) space on

average for recursion
• Commonly used in real-world applications (e.g., Java’s

built-in sort for primitives)

© 2025 Dept of Computer Science UMD 3

Algorithm Time
(Average) Time (Worst) Space

Quick Sort O(n log n) O(n²) O(log n)
Merge Sort O(n log n) O(n log n) O(n)

Insertion Sort O(n²) O(n²) O(1)

The High-Level Algorithm
quickSort(arr, low, high):
 if low < high:
 pivotIndex = partition(arr, low, high)
 quickSort(arr, low, pivotIndex - 1)
 quickSort(arr, pivotIndex + 1, high)

• Sorts elements between low and high.
• Partition puts the pivot in its correct place.
• Recursively sort left and right sub-arrays.
• Partitioning (Hard Split): The work-intensive part of Quick Sort is the

partitioning step, where elements are rearranged around a pivot.
• Recursion (Easy Merge): After partitioning, the sub-arrays are

recursively sorted. No merging is required; the array elements are
"sorted in place" as the recursion works.

© 2025 Dept of Computer Science UMD 4

Partitioning Explained
• Choose a pivot (e.g., last element).
• Use two pointers:

• i tracks position for smaller elements.
• j iterates from low to high - 1.
• Swap arr[i] and arr[j] when arr[j] < pivot.
• Finally, place the pivot at i + 1.

• After Partitioning: Once the partitioning step is complete, the pivot will be in its correct and
final position. This means that the pivot element will never move again.

• Smaller Elements on the Left: All elements smaller than the pivot will be placed in the left
half of the array. They are not necessarily in sorted order, but they are all smaller than the
pivot.

• Larger Elements on the Right: Similarly, all elements larger than the pivot will be placed in
the right half of the array. These elements are also not necessarily in sorted order, but
they are all larger than the pivot.

• What Happens Next: After the partitioning, the array is divided into two sub-arrays (left and
right of the pivot). Each sub-array is then treated as a new input to the same algorithm. This
is the magic of recursion—you are solving the same problem, just with smaller, simpler
sub-problems!

• Recursion's Power: The same Quick Sort algorithm is applied to these sub-arrays, which
are now smaller and simpler. The process repeats until the sub-arrays become so small
(typically a single element) that they are trivially sorted.

© 2025 Dept of Computer Science UMD 5

Step-by-Step Example
Input: arr = [10, 3, 7, 2, 6] //Pivot: Select the last element as the pivot. Pivot = 6.
• Start with i = -1 (index of last element smaller than the pivot).
1. i = -1, j = 0 (element = 10):

1. 10 is greater than 6, so do nothing. i stays at -1.
2. i = -1, j = 1 (element = 3):

1. 3 is smaller than 6, so increment i to 0, and swap arr[0] and arr[1].
1. New array: [3, 10, 7, 2, 6].

3. i = 0, j = 2 (element = 7):
1. 7 is greater than 6, so do nothing. i stays at 0.

4. i = 0, j = 3 (element = 2):
1. 2 is smaller than 6, so increment i to 1, and swap arr[1] and arr[3].

1. New array: [3, 2, 7, 10, 6].
5. i = 1, j = 4 (pivot = 6):

1. Now place the pivot (6) in its correct position by swapping arr[i + 1] and the pivot.
1. Swap arr[2] and arr[4].
2. New array: [3, 2, 6, 10, 7].

• Key Points:
• Pivot (6) is now in its correct position.
• Left sub-array contains elements smaller than the pivot, and right sub-array contains elements

larger than the pivot.
• The process repeats recursively, working with smaller and simpler sub-arrays.

© 2025 Dept of Computer Science UMD 6

Time Complexity

• Worst case happens when:
• Pivot is always the smallest or largest element
• Example: Already sorted input with naive pivot choice.

• Ways to improve:
• Randomized Pivot: Pick a random element as pivot to avoid worst-case
• Median-of-Three Pivot: Use the median of first, middle, and last
• Switch to Insertion Sort for small sub-arrays (e.g., size < 10)

• Tradeoffs:
• Slightly more complex code
• Better average performance

© 2025 Dept of Computer Science UMD 7

Case Time Complexity
Best Case O(n log n)
Average
Case O(n log n)

Worst Case O(n²)

Proving Quick Sort is O(n log n) for 50-50 Split
• Let’s assume that at each recursion step, the array is split into two roughly

equal halves (50-50 split).
1. Initial Array (n elements):

1. Total work at the first level of recursion: n (all elements need to be
compared to the pivot).

2.Second Level of Recursion:
1. After partitioning, the two sub-arrays each contain n/2 elements.
2. Total work at this level: n/2 for each sub-array, n/2 + n/2 = n total.

3.Third Level of Recursion:
1. The array is split into four sub-arrays, each containing n/4 elements.
2. Total work at this level: n/4 + n/4 + n/4 + n/4 = n.

4.Subsequent Levels:
1. This pattern continues with the array being split into more and more

sub-arrays, each time halving the size.
2. Each level of recursion requires n comparisons in total.

© 2025 Dept of Computer Science UMD 8

Proving Quick Sort is O(n log n) for 50-50 Split
• At each level of recursion, we split the array into two, and the total work done

at each level is O(n). The number of levels of recursion is log₂ n, as the array
size keeps halving.

• So, the total work done is the sum of all levels:
• Work per level: O(n)
• Number of levels: O(log n)
• Therefore, the overall time complexity is:
 O(n) * O(log n) = O(n log n)
• Note #1:

• Perfect 50-50 Split: Optimal scenario for O(n log n).
• Other Splits: Quick Sort still maintains O(n log n) for non-perfect but

relatively balanced splits (e.g., 60-40, 70-30).
• Note #2:

• QuickSort has to be at least n log n slow in the best case, because that’s the
least amount of work any comparison-based sorting algorithm can
possibly do. Formally, this is written as saying that QuickSort is in Ω(n log n).

© 2025 Dept of Computer Science UMD 9

Space Complexity of Quick Sort
• In-place sorting:

QuickSort does not use extra arrays — all swaps happen inside the original array.
• What about recursion?

• QuickSort is a divide-and-conquer algorithm.
• It recursively processes subarrays.
• Each recursive call adds a frame to the call stack.

• Best and Average Case:
• If each pivot splits the array roughly in half:
• The depth of the recursion is log₂n
• So the call stack only grows to O(log n)

• Worst Case
• If the pivot always picks the smallest or largest value (bad splits):

• Recursion depth becomes n
• So space usage becomes O(n)

• In summary:
• In the average case, QuickSort only needs O(log n) space —

that's just the memory for recursion, not for extra arrays!
See: QuickSort Example. If time allows, make it generic so that
it works with other types, such as Strings.

© 2025 Dept of Computer Science UMD 10

