
CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Merge Sort

Department of Computer Science
University of Maryland, College Park

Introduction to Merge Sort
• Merge Sort is a classic divide-and-conquer algorithm.
• Developed by John von Neumann in 1945.
• It’s a recursive algorithm that:
1.Divides the array
2.Sorts each half
3.Merges the halves

• Always runs in O(n log n) time.
• It is a stable sort, meaning equal elements keep their

original order.

© 2025 Dept of Computer Science UMD 2

Divide and Conquer – The Three Steps
• 1. Divide
• Split the array into two halves.

• 2. Conquer
• Recursively sort each half.

• 3. Combine
• Merge the two sorted halves into one.

Example
Original: [8, 4, 5, 2]

→ Divide: [8, 4] and [5, 2]

→ Sort: [4, 8] and [2, 5]

→ Merge: [2, 4, 5, 8]

© 2025 Dept of Computer Science UMD 3

Easy Split, Hard Merge
• Splitting is easy:

• Just compute the midpoint: mid = (left + right) / 2
• No comparisons are done.
• Just index math.

• Merging is the work-intensive part:
• Requires combining two sorted arrays.
• Takes linear time, proportional to the total number of elements

being merged.
• Extra space is needed to hold merged results.

Note:
• Merge Sort = Easy Split, Hard Merge
• QuickSort = Hard Split, Easy Merge

© 2025 Dept of Computer Science UMD 4

Example of Merge Sort
• Let’s sort this array: [8, 3, 1, 7, 0, 10, 2]

Divide Phase
Split 1: [8, 3, 1, 7] and [0, 10, 2]
Split 2: [8, 3] [1, 7] [0, 10] [2]
Split 3: [8] [3] [1] [7] [0] [10] [2]

Conquer and Merge Phase
Merge [8] and [3] → [3, 8]
Merge [1] and [7] → [1, 7]
Merge [0] and [10] → [0, 10]
[2] remains alone for now

Merge [3, 8] and [1, 7] → [1, 3, 7, 8]
Merge [0, 10] and [2] → [0, 2, 10]

Final Merge → [1, 3, 7, 8] and [0, 2, 10] → [0, 1, 2, 3, 7, 8, 10]

© 2025 Dept of Computer Science UMD 5

Why O(n log n)?
• Each level splits the array in half → takes log₂(n) levels.
• At each level, you merge all elements → takes O(n) work.
For n = 8:
• log₂(8) = 3 levels
• Work per level: O(8)
• Total work: 3 × 8 = 24 steps = O(n log n)

Recursion Tree (Simplified):
Level 0: [8 elements]
Level 1: [4] [4]
Level 2: [2] [2] [2] [2]
Level 3: [1][1] [1][1] [1][1] [1][1] → base case
Each level processes all elements once → total work = O(n log n)
The proof idea is the same as the 50-50 split for Quick Sort, with
the key difference being that in Merge Sort, we don't need to
assume a 50-50 split — we are guaranteed one.

© 2025 Dept of Computer Science UMD 6

Why O(n) Space?
Merging Uses Extra Memory:
• To merge two sorted halves, we need a temporary array.
• It holds up to n elements.
So:
• Merge Sort uses O(n) space for:

• Temporary arrays during merge
• Recursion stack (O(log n))

• Note 1: In-place merge sort is possible but much harder
and slower in practice.

• Note 2: Linked list merge sort can be done with O(1)
space since we just rearrange pointers.

© 2025 Dept of Computer Science UMD 7

Merge Step – Visual Walkthrough
• Let’s merge [3, 8] and [1, 7] into a sorted array.

[3, 8] [1, 7]
 ^ ^
Compare 3 vs 1 → 1 goes into merged array
[3, 8] [1, 7]
 ^ ^
Compare 3 vs 7 → 3 goes in
[3, 8] [1, 7]
 ^ ^
Compare 8 vs 7 → 7 goes in
[3, 8] [1, 7]
 ^
Only 8 remains → append
[1, 3, 7, 8]

Merging takes O(n) time and requires temporary space.

© 2025 Dept of Computer Science UMD 8

Merge Sort Recursive Structure
// Pseudocode
mergeSort(arr):
 if size <= 1:
 return
 split into left and right
 mergeSort(left)
 mergeSort(right)
 merge(left, right)

Merge Logic:
• Compare smallest elements of left and right.
• Copy the smaller one into result array.
• Repeat until all elements are merged.
See: MergeSort Example. If time allows, make it
generic so that it works with other types, such as
Strings.

© 2025 Dept of Computer Science UMD 9

Merge Sort on Linked Lists
• Why Merge Sort Works Well on Linked Lists
• No index access needed: Unlike arrays, linked lists can't support random

access efficiently. Merge Sort only needs sequential traversal.
• No swapping: Elements are rearranged by changing pointers, not values.
• Efficient splitting: Use the "slow/fast pointer" technique to find the middle

node and divide the list into two halves.
• Merging: Two sorted linked lists can be merged in O(n) time by walking

through them and relinking nodes.
• Space-efficient: No need for extra arrays — merging is done via pointers.
• Time Complexity: O(n log n) (due to recursive halving and merging)
• Space Complexity: O(log n) recursive stack; no extra memory for

merging.
• Note: Merge Sort is preferred over QuickSort for linked lists because

QuickSort requires random access and complex node rearrangements.

© 2025 Dept of Computer Science UMD 10

Merge Sort for External Data
• External Merge Sort: Sorting Data Too Big for RAM
• Problem: Datasets may be too large to fit in memory (e.g., multi-GB/terabyte log files).
• Goal: Sort data using limited RAM with minimal disk reads/writes.
• Phase 1 – Create Sorted Runs

• Read manageable-sized chunks of data into memory.
• Sort each chunk with in-memory Merge Sort or QuickSort.
• Write each sorted chunk ("run") back to disk.

• Phase 2 – Multi-Way Merge
• Open multiple sorted runs.
• Merge them together in a sequential fashion.
• Use a priority queue/min-heap to keep track of the smallest elements across files.
• Write the merged result back to disk.

• Time Complexity: O(n log n)
Disk Efficiency: Sequential I/O is used — avoids random disk seeks
Applications: Large-scale log processing, database systems, MapReduce/Hadoop
jobs.

• Merge Sort is the industry-standard approach for external sorting due to its
sequential disk access and scalability.

© 2025 Dept of Computer Science UMD 11

