
CMSC 132: 
OBJECT-ORIENTED PROGRAMMING II

Java I/O – Part 2: Binary Files

Department of Computer Science
University of Maryland, College Park



Introduction to File I/O
• What is a file? A collection of data stored on disk.
• Text vs. Binary files:
• Text files: Store data as human-readable characters (e.g., .txt).
• Binary files: Store data as raw bytes, more compact and efficient.

• We learned about Text files in a previous lab session
• Why use binary files? Faster, more precise storage of 

structured data (e.g., images, serialized objects).
• Streams in Java: Sequential flow of data, similar to a 

pipeline.

TODAY WE WILL TALK ABOUT BINARY FILES

© 2025 Dept of Computer Science UMD 2



Understanding Streams in Java
• Definition: A sequence of data elements made available 

over time.
• Two types of streams:
• Byte Streams: Process data in raw bytes (InputStream, 

OutputStream).
• Character Streams: Process text data (Reader, Writer).

• Why use byte streams? Needed for handling binary 
files, images, and non-text data.

• Direction of Streams:
• Input Stream: Reads data into a program.
• Output Stream: Writes data from a program.

© 2025 Dept of Computer Science UMD 3



Writing to Binary Files with FileOutputStream
• FileOutputStream writes raw bytes to a file.
• Features:
• Used for saving non-text data like images and audio files.
• Can write individual bytes or byte arrays.
• May require explicit flushing for efficient storage.

• Potential Issues:
• Cannot write primitive types directly (use DataOutputStream).

• It works at the byte level only.
• It does not understand Java primitive types like int, double, boolean, 

char, etc.
• Not buffered, which may cause performance overhead.
• Think of FileOutputStream like a raw pipe. You can push raw bytes 

through it, but it doesn't know the format of your data.
• See: BinaryFileWriter and BinaryFileWriter1

© 2025 Dept of Computer Science UMD 4



Enhancing Performance with BufferedOutputStream
• Why use buffering? Reduces I/O operations by grouping 

multiple bytes before writing.
• How BufferedOutputStream helps:
• Speeds up writing operations by minimizing disk access.
• Stores data in a temporary buffer before flushing to disk.
• Works in combination with FileOutputStream.

• Use Case: Writing large binary files efficiently.

• See: BufferedOutputDemo 
Note: When you run BufferedOutputDemo it will create a .bin file with 
size of 10, but when you open in the text editor you will see nothing because 
the bytes it writes correspond to non-printable characters !

© 2025 Dept of Computer Science UMD 5



Writing Primitive Data with DataOutputStream
• Problem: FileOutputStream writes only raw bytes, so 

primitive types need conversion.
• Solution: DataOutputStream converts primitive types (int, 

double, boolean, etc.) into byte format.
• Key Features:
• Works on top of FileOutputStream.
• Writes data in a structured binary format.
• Can be read later using DataInputStream.

• Common Uses: Writing numerical data, structured 
records, game save files, etc.

• See: BinaryDataWriterExample

© 2025 Dept of Computer Science UMD 6



Reading Binary Files with FileInputStream
• FileInputStream reads raw bytes from a file.
• Features:
• Reads data as an array of bytes or one byte at a time.
• Works for any binary file type (e.g., images, serialized data).

• Potential Issues:
• Does not interpret bytes into meaningful types.
• May be inefficient for large files (use buffering).

See:FileInputStreamExample

© 2025 Dept of Computer Science UMD 7



Improving Read Performance with BufferedInputStream

• Why buffer input? Reading a file one byte at a time is 
slow.

• How BufferedInputStream helps:
• Reduces the number of disk accesses.
• Speeds up reading by using an internal byte buffer.

• Typical Usage: Reading large binary files efficiently.

See: BufferedInputStreamExample 

© 2025 Dept of Computer Science UMD 8



Reading Structured Data with DataInputStream
• Problem: FileInputStream reads only raw bytes.
• Solution: DataInputStream reads bytes and converts 

them into Java primitive types.
• Key Features:
• Works with FileInputStream.
• Reads int, double, boolean, String, etc., in binary format.

• Common Uses: Reading structured data, game saves, 
database files.

See:DataInputStreamExample
//run BinaryDataWriterExample first to have .bin file

© 2025 Dept of Computer Science UMD 9



Standard I/O in Java (System Class)
• Standard Streams in Java (System class in java.lang)
• System.in → Standard input (keyboard, an InputStream).
• System.out → Standard output (console, a PrintStream).
• System.err → Standard error output (error messages, a 

PrintStream).

• Why use standard streams?
• Redirect input/output (e.g., reading from a file instead of the 

keyboard).
• Print formatted messages (System.out.println).
• Debugging (System.err to print errors separately).

See: 2 examples in standard package

© 2025 Dept of Computer Science UMD 10


