CMSC132, Fall 2022, QUIZ #3 (DURATION: 30 MINUTES) — 30 pts

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE): KEY

STUDENT ID (e.g. 123456789):

INSTRUCTIONS:
Assume the code below with all necessary import statements.
public class MyLinkedList<T extends Comparable<T>> {

private class Node {
private T data;
private Node next;
private Node previous;

private Node(T data) {
this.data = data;
previous = next = null;

private Node head, tail;

public MyLinkedList() {
head =tail = null;
}

/* Makes a linear singly linked list with each new item being the new head */
public MyLinkedList<T> add(T data) {

Node newNode = new Node(data);
newNode.next = head;
head = newNode;

return this;

}

public void convertToCDL(){
//you will write this method which will call the private recursive convertToCDLAux

}

public String toString() {

String result = "\" ";
Node curr = head;

while (curr != null) {
result += curr.data + " ";

curr = curr.next;

}

return result + "\"";



public String toStringCircle() {

String result = "\" ";
Node curr = tail;

while (curr !=null){
result += curr.data + " ";
curr = curr.previous;
if (curr==tail) //back to Tail
break;

}

return result + "\"";

public class SampleDriver {

public static void main(String[] args) {

String answer = ;

MyLinkedList<String> newList = new MyLinkedList<String>();
newList.add("Sarah").add("Rose").add("Peter").add("Kelly").add("Albert");
answer+= newList+"\n";

newList.convertToCDL();

answer+= newList.toStringCircle();

System.out.println(answer);

b}

Driver Output

" Albert Kelly Peter Rose Sarah "
" Sarah Rose Peter Kelly Albert "

A call to convertToCDL converts the singly linked list (as seen in class examples and created by repeated
calls of the add method) to a circular doubly linked list. This just means the previous field of each node
will point to the previous node, the previous of head points to tail (since it is a circle), and the next field of
the tail points to head instead of null. Notice that during the creation of the singly linked list via calls to
add, the tail and previous ficld are not modified, and therefore will contain their default value of null
when convertToCDL is called.

If convertToCDL is called on an empty list (head is null), just return. Otherwise calls the private
convertToCDLAuXx to recursively assign the appropriate value to each previous field of the nodes.
Assigning a value to the tail field, the previous field of head, and the next of tail can be done when
the recursion is done or in convertToCDL. You can decide on the number and types of the parameter of
convertToCDLAux and its return value (void is ok). But you cannot change the header of
convertToCDL:

public void convertToCDL(){



You cannot have any loops in your code, make any nodes (or new list), or use any auxiliary data structures
(array, ArrayList, sets, etc.). Assume that convertToCDL is called only once on the singly linked list created
by add. In other words, don’t worry about calling convertToCDL on a list that has already been converted.

public void convertToCDL(){
if (head == null) //empty case
{
tail = null; //not needed
return;

}
convertToCDLAux (null, head);

tail.next = head;
head.previous = tail;

by

private void convertToCDLAux(Node prev, Node headAux) {
if (headAux '= null) {
convertToCDLAux (headAux, headAux.next); //go to end
headAux.previous =prev;

¥
else {

tail = prev; //set the tail
h

Directory ID:




