
CMSC132, Fall 2021, QUIZ #3 (DURATION: 30 MINUTES) – 30 pts

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

INSTRUCTIONS:

Assume the code below with all necessary import statements.
public class StringList {

 private class Node {
 private String data;
 private Node next;

 private Node(String data) {
 this.data = data;
 next = null;
 }
 }

 private Node head;
 private Node tail;

 public StringList() {
 head = tail= null;
 }

 public StringList add(String data) {
 Node newNode = new Node(data);
 if(head==null)
 { newNode.next = head;
 head = newNode;
 tail = head;
 }
 else
 {
 tail.next = newNode ;
 tail = tail.next;
 }

 return this;
 }

 public String toString() {
 String result = "\" ";
 Node curr = head;

 while (curr != null) {
 result += curr.data + " ";
 curr = curr.next;
 }

 return result + "\"";
 }

 public ArrayList<StringList> makeList(String headValue) {
 //Code here needs to make the first call to private void makeListAux method
 }

 //code for the private void makeListAux method - MUST BE RECURSIVE, NO LOOPS!!!
 //Can have up to 5 parameters
}

public class SampleDriver {

 public static void main(String[] args) {

 StringList myList = new StringList();

 myList.add("if").add("else").add("for").add("int").add("for");

 myList.add("for").add("cmsc132");
 myList.add("if").add("for").add("java");
 System.out.println(myList);

 System.out.println("ArrayList for first call");
 for(StringList s: myList.makeList("for"))
 System.out.println(s);

 System.out.println("ArrayList for second call");
 for(StringList s: myList.makeList("map")) //empty arrayList returned
 System.out.println(s);
 }

}

Driver Output

" if else for int for for cmsc132 if for java "
ArrayList for first call
" for int "
" for "
" for cmsc132 if "
" for java "
ArrayList for second call

makeList will return an Arraylist where each element in the ArrayList will reference a StringList
object with the head node containing the headValue (argument passed in to makeList). makeList
will make a call to makeListAux which will recursively traverse the current StringList object (i.e.
caller of makeList) ignoring all values until it finds headValue. Once headValue is found, a new
StringList is created and assigned as an element of the ArrayList using the process described below.

1. A new StringList object should be created and assigned to an element of the ArrayList. The head of this
new list should point to a new node that contains headValue as its data.
2. All other nodes encountered while traversing the current StringList should be added as new nodes of
this new StringList.
3. The process of adding nodes to this new StringList only stops if you run out nodes in the current
StringList object or if the headValue is encountered again.

If the headValue is encountered again, the 3 steps above should occur again to make yet a new
StringList object that will be assigned to a subsequent element of the ArrayList.

In the sample driver, the headValue is for. if and else from the current StringList (i.e. myList)
object are ignored. The first for that is encountered causes the creation of a new StringList object being
assigned to the ArrayList with a node with the value of for as the head of this new StringList. int is added as
the next node of this new StringList. When for is encountered again, this cause a new StringList object
to be created and assigned to the second element of the ArrayList. When for is encountered yet a third time,
this causes a third StringList to be created and the reference is assigned as the third element of the
ArrayList. cmsc132 and if are added as nodes to this third StringList. Finally, encountering

for again, cause a new 4th StringList to be created with for followed by java. Since you are
working with Strings, deep copies of the data are not necessary, but make sure each StringList has its own
nodes (no sharing).

//Solution by Matthew Simmons

public ArrayList<StringList> makeList(String headValue) {

 ArrayList<StringList> lst = new ArrayList<>();

 makeList(headValue, lst, head, -1);

 return lst;

}

private void makeList(String headValue, ArrayList<StringList> lst, Node curr, int count) {

 if(curr != null) {

 if(curr.data.equals(headValue)) {

 count++;

 lst.add(new StringList());

 }

 if(count >= 0) { // Count not negative means the above has run

 lst.get(count).add(curr.data);

 }

 makeList(headValue, lst, curr.next, count);

 }

}

Directory ID:

