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Abstract. Recent advances have enabled provision and consumption of mobile 
services by small handheld devices. These devices have limited capability in 
terms of processing ability, storage space, battery life, network connectivity and 
bandwidth, which presents new challenges for service discovery architectures. 
As a result, there is an increased imperative to provide service requesters with 
services which are the most relevant to their needs, to mitigate wastage of 
precious device capacity and bandwidth. Service semantics must be captured to 
match services with requests, on meaning not syntax. Furthermore, requester 
and service context must be utilized during the discovery process. Thus, there is 
a need for a service discovery model that brings together ‘semantics’ and 
‘context’. We present a case for bringing together semantics and context for 
pervasive service discovery by illustrating improved levels of precision and 
recall, or in other words increased relevance. We also present our model for 
integrating semantics and context for pervasive service discovery. 

1 Introduction 

Recent years have seen a rapid increase in the usage and availability of small 
handheld wireless devices, which can provide or request services. These devices are 
far more heterogeneous and resource constrained than traditional desktop PCs. There 
is therefore an increased need for transmission of only relevant data and reduced 
processing costs. In addition, mobile users time constraints, given the highly dynamic 
and volatile operational environment they work in. Therefore, pervasive discovery 
architectures must return results containing only the most relevant services as deemed 
by the requester.  

Current pervasive service discovery architectures utilise simple string attribute 
based techniques or interface comparison which fail to adequately discover the most 
relevant services. Capturing behaviour [1, 2] would allow requests to be matched with 
services that may be described differently but are semantically equivalent in meaning. 
It would also enable partial matching in the absence of an exact match. The 
descriptions must be rich enough to allow reasoning on the semantics to infer 
additional information from that provided, by exploiting logical relations between the 
concepts used. For instance, if a user wishes to know whether device A was in room 



B at time T, this can be inferred from the knowledge that device A was in room C at 
time T, where room C is not physically located within room B. 

W3C has defined semantic web service languages such as DAML-S/OWL-S [3] 
which meet these requirements. They are used to construct ontologies, which provide 
an abstract model, defining concepts and properties which relate to a domain of 
interest [1] and a hierarchy of relations between these, using a set of axiom rules. This 
is sufficient to define formal semantics of service behaviour that can be reasoned 
about.  

In addition, mobile users seek services that are most relevant to them and their 
current situation. They generally prefer services that are from nearby locations, return 
fresh up-to-date, newly created data and return results that are displayable on the 
requester device [4]. Due to an increased freedom of mobility, the user’s environment, 
location and the objects around the user are more dynamic. This necessitates the 
collection and use of context during discovery. Context-aware discovery demands the 
use of implicit information pertaining to both requester constraints and provider 
requirements, which can affect the usefulness of the returned results [5]. 

The interpretation of context information, which is highly interrelated and 
imperfect, can be influenced by perspective. It can be misleading if used out of 
context or without relating it to the domain of interest. Therefore, context must be 
described semantically so that valid deductions can be drawn from it. For instance, 
displaying something to nearest display may not guarantee the user can actually see 
the display; it might be behind a wall. Current architectures to date do not bring 
semantics and context together, to enrich the service matching process during 
pervasive service discovery.   

In this paper, we demonstrate, through an illustrative case study, how matching 
services with requests based on semantic meaning rather than syntax, while also 
including context information, will improve the relevance of the pervasive services 
returned to the requester. We also propose a preliminary conceptual model which will 
support this assertion.  

The remainder of this paper will be as follows: Section 2 reviews related work, 
section 3 presents our motivating scenario, section 4 presents our preliminary 
architectural model and section 5 concludes the paper.  

2 Related Work 

In this section we review related research and evaluate their support for rich 
expression of semantic meaning and context-aware discovery. Table 1 presents a 
comparison of these architectures.  

In terms of semantics, Jini [6], UPnP [7] SLP [8, 9] and Salutation [10], Konark 
[11] and SSDM [12] use either interface of string based matching. Anamika [13] and 
MobiShare [4, 14] utilise RDF or OWL ontological service types to support limited 
subclass relations. They do not consider other relations such as ‘part-of’ and service 
type, alone, provides a category but leaves out the detail required to establish what the 
service does. DReggie [15] utilises DAML and supports reasoning and approximate 
matching. However, it is limited to a single predefined ontology which defines 
characteristics such as service mobility and service requirements, only. COSS [1] 
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supports service type, inputs and outputs, approximate matching and ranking. 
However, it does not allow definition attributes beyond this and does not support 
reasoning.  

In terms of context, both UPnP and Konark support state change events and LUDS 
[16] extends these for use in discovery, based on string comparison. SSDM and Jini 
Context only support easily rankable quality of service (QoS) context attributes and 
MobiShare supports string context matching. COSS supports only a limited set of 
predefined semantic attributes which can be classified into Boolean ‘present’ or ‘not 
present’. However, this Boolean approach and a lack of reasoning support, provides 
no real advantage over string based mechanisms.  

Table 1. Comparison of related architectures. 

Architecture Service Description and Matching Context-aware Discovery 
Jini Interface/attribute string comparison None 
UPnP Service name string comparison None, but supports state change events 
SLP Service type/attribute string comparison None 
Salutation Service type/attribute string comparison None 
Anamika Ontological service type only None 
DReggie DAML predefined ontology None 
Konark Service type or keyword string comparison None, but supports state change events 
SSDM String comparison and auctioning Limited to QoS 
MobiShare Ontological service type Context string comparison 
COSS Ontological service type, outputs and inputs Boolean ontological attributes 
Jini Context See Jini Limited to QoS 
LUDS String based comparison State context support 

Existing pervasive discovery architectures lack the rich ontological representation 
required to express the functionalities and capabilities of services, that separate parties 
can agree upon and understand [15]. They also fail to support the broad range of 
context information. This results in discovery of services which are less relevant to 
the mobile user’s current situation or device constraints. 

Semantic languages are still in an early stage of development and evaluation. This 
and their inherent complexity have led to their slow uptake despite the promised 
benefits. Inclusion of semantic languages into heavyweight reasoners such as Prolog 
[17], Clips [18] and Jess [19] has been slow. Furthermore, the memory intensive 
nature of these reasoners also presents challenges for incorporating reasoning into 
pervasive environments. Lack of semantically represented context has hampered the 
effectiveness of context-aware discovery. Challenges include addressing how to 
represent context semantically and whether OWL is sufficiently rich.  

3 Improving Recall and Precision – An Illustrative Argument 

In this section we demonstrate how the integration of semantics and context will 
improve the relevance of services, discovered in pervasive environments. We use the 
metrics of precision and recall [20] to highlight this improvement. 
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3.1 Printer Service Scenario 

Bob wishes to print a document from his PDA, but does not know where to find a 
printer on his university campus. Bob issues the service request listed in Table 2. It 
contains two kinds of attributes: static and dynamic. Static attributes are those in 
which the value changes rarely, while in dynamic attributes the value changes 
regularly. Bob’s static attributes indicate he wants the cheapest, non-colour printer. 
His dynamic attributes indicate he wants the closest printer which is available to 
students, ready (with paper and no paper jam) and with the shortest print queue. Each 
attribute is also specified as either a vital or rank attribute. Vital indicates a service 
must match the attribute in order to be included in the list of discovered services, 
while rank indicates the attribute will assist in determining a ranking index for the 
service and is associated with a weighting of importance to the requester. Any 
requested attribute which is unspecified by the service description, is not ruled out, 
but given lowest ranking for that attribute. 

Table 3 lists Bob’s current context. Table 4 presents the services currently on offer, 
listing service type and other attribute values for the service. The last column 
indicates whether the service is relevant to Bob. Since Bob specifies colour, available 
and ready as vital attributes, only three services are actually relevant to him. 

Table 2. Bob's service request summary. 

Attribute Name Value Vital/Rank Weighting 
Service type Printer Vital  
Colour No Vital  
Price Cheap Rank 0.3 
Available Yes Vital  
Ready (has paper, no jam, etc) Yes Vital  
Location Close Rank 1 
Paper Jams Low Rank 1 
Print Queue Short Rank 0.7 

Table 3. Bob’s current context. 

Name Value 
Location Outside Building A 

Table 4. Services on offer. 

# Type Col-
our 

Price Avail-
able 

Ready Location Paper 
Jams 

Print 
Queue 

Rel-
eva
nt 

1 Laser Printer Yes 50c Yes Yes Building A 0 5 No 
2 Laser Printer No 15c No No Building B 0 0 No 
3 Laser Printer Neg-

ative 
15c Affir-

mative 
Affir-
mative 

Building C 0.3 0 Yes 

4 Laser Copier No 10c Yes Yes Building G 0.01 5 Yes 
5 Ink Jet Yes 30c No No Building A 0.3 0 No 
6 Ink Jet No 15c Yes Yes Building F 0.2 3 Yes 
7 Printer No 9c No Yes Building L 0.05 0 No 
8 Printer 

Magazine 
       No 

9 Printing Agency     Closed   No 
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3.2 Impact of Semantics and Context on Recall and Precision 

Bernstein and Klein [20] define two quality metrics to assess the quality of services 
returned in a service list, with respect to relevance to the requester. These are recall 
and precision. Recall measures how well a discovery architecture retrieves all the 
relevant services; and precision, how well the architecture retrieves only the relevant 
services. We define a service to be relevant if it is judged so by the requesting user.  

In order to determine recall and precision: Let x be the number of relevant services 
returned to the requester. Let n be the total number of relevant services available. Let 
N be the total number of services returned.  

Recall = x / n . (1) 

Precision = x / N . (2) 

Supporting semantics improves both recall and precision, while supporting 
context-aware discovery improves only precision. This is because context-aware 
discovery involves ‘ruling out’ irrelevant services and does not ‘rule in’ services that 
have already been discounted. However, since semantics affects both measures, 
contextual attributes which are not described semantically would reduce both 
precision and recall, because services could be ruled out due to misinterpreted 
contextual representation. For instance, the ‘printer ready’ attribute could hold the 
attribute ‘affirmative’, but ruled out because this was not equal to ‘yes’.  

Current architectures match request attributes with service description attributes, 
based on exact string matching and do not support context attributes. Table 5 presents 
a ranked service list resulting from the discovery process using syntax based 
techniques, where services are matched on service type alone. Context attributes are 
also omitted since they are not supported. The vital attributes are used to determine 
which services will comprise the list of discovered services. In terms of service type, 
only those services which contain the word ‘printer’ would be discovered. Service 7 
would be ranked first because it matches this keyword exactly. Service 8 and 9, which 
refer to a magazine called ‘Printer’ and a printing agency, respectively, are 
discovered, but are not relevant.  

The recall ratio resulting from Table 5 is 1/3 or a decimal value of 0.33. The 
precision ratio is 1/6 or decimal of 0.17. These results highlight the limited 
effectiveness of such techniques because five irrelevant services were discovered and 
only one of three relevant services were discovered.  

Table 5. Service list returned by current architectures. 

# Type Colour Price Relevant 
7 Printer No 9c No 
1 Laser Printer Yes 50c No 
2 Laser Printer No 15c No 
3 Laser Printer Negative 15c Yes 
8 Printer Magazine   No 
9 Printing Agency   No 

If static attributes ‘colour’ and ‘price’ were matched during discovery service 1 
would be correctly ruled out, but service 3 would also be incorrectly ruled out because 
‘negative’ does not match the requested ‘no’ colour value, even though it has the 
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same meaning. No relevant services would be discovered. The ‘price’ attribute cannot 
be utilised by current architectures, because they cannot interpret the meaning of 
‘cheap’ in Bob’s service request. No service has the value ‘cheap’ for ‘price’. 

If current architectures were extended to support context attributes, the service list 
provided in Table 6 would be returned. Since ‘available=yes’ and ‘ready=yes’ are 
vital request attributes, services 7, 1, 2 were correctly removed from the discovered 
services list. However, service 3 was also pruned from the list because ‘negative’ and 
‘affirmative’ were different symbols to ‘no’ and ‘yes’, respectively. Consequently, 
only services 8 and 9 were discovered. Both of these services are completely 
irrelevant to Bob, as they do not assist him in his goal of printing a digital document. 
Attributes such as ‘price’, ‘location’, ‘paper jams’ and ‘print queue’, were also 
interpreted incorrectly. For instance, Service 9 was ranked higher than service 8, 
because the requested ‘location=close’ matched service 9’s ‘location=closed’. This is 
an example of a homonym in which terms are syntactically similar, but semantically 
different. Service 9’s ‘closed’ value indicates that the agency is currently not trading 
for business through its store front. This results in a zero finding for both recall and 
precision. 

Table 6. Service list returned by current architectures with context. 

# Type Colour Price Available Ready Location Paper 
Jams 

Print 
Queue 

Rele-vant 

9 Printing 
Agency 

    Closed   No 

8 Printer 
Magazine 

       No 

We propose a semantic data representation be adopted for pervasive service 
discovery, to ensure that each request attribute is matched with service description 
attributes based on meaning rather than symbol. Context information must also be 
utilised and represented semantically. Table 7 presents the services discovered under 
this approach, when considering vital attributes. In his request, Bob indicated he 
sought a service of the type printer, which was matched as having the same meaning 
as ‘Laser Printer’ and ‘Ink Jet’. The requested colour attribute’s ‘no’ value was 
matched with ‘no’ and ‘negative’. For the ‘available’ and ‘ready’ attributes, ‘yes’ was 
matched with ‘yes’ and ‘affirmative’.  

Table 7. Discovered service list returned by proposed model using vital attributes. 

# Type Colour Available Ready 
3 Laser Printer Negative Affirmative Affirmative 
6 Ink Jet No Yes Yes 
4 Laser Copier No Yes Yes 

Table 8 shows how the services were ranked to provide a ranked service list. Each 
rank attribute of each service, was ranked relative to the corresponding attribute of the 
other services in the discovered set. This provides a level of match for each attribute 
of a service, with the request. For instance, in the case of the ‘frequency of paper 
jams’ attribute, service 4 was ranked first because it had the fewest paper jams 
(frequency of 0.01) comparative to the other services discovered, followed by service 
6 then 4. The rankings are then weighted according to the weighting of importance to 
the requester, specified in the service request, to provide an effective rank. For each 
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service, the effective rankings for each attribute are added together to provide an 
overall rank index for that service. The service with the lowest overall rank index, is 
ranked first in the final list returned to the requester.  

Using the measures of recall and precision, it can be seen that bringing together 
‘semantics’ and ‘context’ will dramatically improve the effectiveness of the service 
discovery process, returning only the most relevant services to the requester. The 
resulting recall ratio increases to 1, based on the service list presented in Table 7 and 
Table 8, from 0.33 under syntax matching (Table 5). The precision ratio result 
increases to 1 from 0.17. 

Table 8. Service list ranking achieved by proposed model. 

# Price Effective 
Rank 

Location Effective 
Rank 

Paper 
Jams 

Effective 
Rank 

Print 
Queue 

Effective 
Rank 

Overall 
Rank 

3 15c 2*0.3=0.6 Building 
C 

1*1= 1 0.3 3*1= 3 0 1*0.7=0 0.6+1+3 
+0.7=5.3 

6 15c 2*0.3=0.6 Building 
F 

2*1= 2 0.2 2*1= 2 3 2*0.7=1.4 0.6+2+2 
+1.4=6 

4 10c 1*0.3=0.3 Building 
G 

3*1= 3 0.01 1*1= 1 5 3*0.7=2.1 0.3+3+1 
+2.1=6.4 

Recall has improved because all the relevant services were discovered and 
precision improved because only the relevant services were discovered. This shows 
there is a need for a pervasive service discovery model that facilitates service 
matching using semantics and context. We now present our preliminary conceptual 
model for pervasive service discovery.  

4 Preliminary Conceptual Model 

In this section we present our preliminary conceptual model, to realise our proposed 
approach for bringing together ‘semantics’ and ‘context’. 

4.1 Service Discovery 

In our preliminary conceptual model we have several modules which support and 
utilise semantically represented information and realise dynamic context attributes 
(Fig 1). Existing discovery protocols are either end-to-end or involve a third party. 
Dabrowski and Mills [21] term this third-party a service cache manager. Our model 
may reside on a service cache manager or at the requester or provider.  

Service providers advertise their services in the form of OWL-S service profiles, to 
the Advertiser Module, which stores these profiles into the Service Description 
Repository. Service profiles contain the functional and non-functional attributes, 
which may include: inputs, outputs, preconditions, constraints, requirements and other 
service attributes. Each of these attributes can be related to web-based ontologies to 
give them semantic meaning.  

Service requesters submit requests in the form of OWL-S service profiles, to the 
Requester Module, which instructs the Discovery Manager to match the request with 
services contained in the Service Description Repository. The requester’s current 
context can be transparently obtained from the User and Device Repositories without 
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the user’s explicit knowledge. The requester will be provided with a ranked list 
containing services which exactly or approximately match the request. 

We discuss the functionality of the modules in Fig 1, in the next sections. 

 

Fig. 1. Conceptual model for semantic context-aware discovery. 

4.2 Semantic Management 

In our architecture, static attributes comprise name and value pairs represented 
semantically as ontological concepts, such that they can be reasoned about. When the 
Discovery Manager receives a service request, the OWL Parser module, implemented 
in Jena [22], is enacted to load and verify OWL-S service profiles and associated 
ontologies and represent these as objects in our architecture. The Service Matcher will 
obtain a set of candidate services from the Service Repository and transform these 
into objects using the OWL Parser. The Service Matcher enacts the Reasoning 
Engine, implemented in Jess [19], to perform matching between the service request 
and individual services. It loads the parsed OWL-S service profiles, related web-based 
ontologies, OWL relationship rules (for example, inverse, equivalence, disjoint, etc.) 
and rules that will perform matching. The reasoner will rank each service for its 
match to each functional and non-functional attribute defined in the request, as in 
section 3. 

4.3 Context Management 

Dynamic attributes hold context information and are represented in the same way as 
static attributes except their value is not determined until needed. The Service 
Matcher utilises the Dynamic Attribute Realiser, to obtain their value, before 
matching takes place. There may be two sides to a dynamic attribute to be obtained: 
the requester’s context constraints or the service’s context requirements. Both sides 
will not always be dynamic attributes; one side could be static. The requester’s 
dynamic attributes are either explicitly contained within the service request or 
implicitly provided by one of two repositories:  
• User Repository: Details relating to the human user of the requesting device will 

be stored in this repository. These may include user preferences explicitly provided 
by the user when he or she used the system for the first time or data implicitly 
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collected by the architecture. Implicit data may include historical usage patterns 
and user behaviour such as services previously invoked by the user. Implicit 
context may be collected using a third-party architecture which has yet to be 
decided on and is the subject of continued investigation. 

• Device Repository: Each user will be associated with one or more devices. Each 
device has its own set of specifications, such as processing capability, screen size, 
input method, etc. This information will be collected from the device when it 
registers with the system for the first time.  

The service’s dynamic attributes will be specified in the service’s description located 
in the Service Description Repository. A service can be associated with two main 
kinds of dynamic attributes: (1) dynamic attributes which can be determined locally 
by the discovery manager and (2) those which must be remotely determined by the 
service provider. An example for the first type is quality of service (number of 
network hops or delay). The second type, falls into two separate subcategories. 
Attributes which are constantly changing (for example service state such as a locked 
door) and those which change less often (for example server load or print queue). The 
discovery manager must remotely query the service provider for the current value of 
constantly changing attributes or is notified by the provider when the value changes 
on a less frequently changing attribute. The provider will specify each attribute’s 
category, in the service description. Once the dynamic attributes have been realised, 
they are returned to the service matcher for matching, as with static attributes.  

We are currently implementing this model in Java. We are using the Mindswap 
OWL-S API [23] and Jena [22] for the OWL representation and OWL Parser module 
in our model. We are using the OWLJessKB [24] API and Jess [19] to implement the 
Reasoning Engine. 

5 Conclusion and Future Work 

Our paper demonstrates that bringing together ‘semantics’ and ‘context’ during 
pervasive service discovery will improve the relevance of services to the requester. 
This is paramount due to the constraints (time and resource) and dynamic/volatile 
nature of pervasive environments. Thus, the main contribution of our paper is our 
analytical illustration of the impact of semantics and context on precision and recall. 

We also propose a preliminary conceptual model for achieving this and we are 
implementing this model to create a prototype. We are working to address the 
significant challenges involved in implementing this model on resource constrained 
small devices. In future work we seek to expand the model’s ability to discover the 
more relevant services, by not only utilising semantics and context, but also other 
mechanisms for service filtering such as user preferences, historical data and others.  
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