
CMSC131, Spring 2020, Final Exam

Deadline: Friday, May 15, 5:00 pm (No late deadline)

INSTRUCTIONS:

• Code distribution available in the StudentsDistribution folder, available in the same folder where this pdf is available.

• Import the above distribution as you usually import a project.

• Immediately after importing the code, verify you can submit (check the submit server submission). We will not accept projects

submitted via e-mail.

• Grading: 132% release tests, 68% secret tests / style and requirements.

• There are no public tests.

• Student tests that you provide will not be graded.

• There is no late submission period; we will grade the highest scoring submission. There are students that wait until exactly

5:00 pm to submit; please do not wait until 5:00 pm. Your submission might not be accepted as it takes time for the

submission to be processed by the submit server.

• We expect you to submit often during the exam period. This will allow you to have a backup in the submit server and to address

compilation problems before the deadline. Network problems, Eclipse submission problems, or submit server overloading are not

valid excuses for not submitting your work.

• You have 8 release tokens and you can release-test your work anytime.

• You can only post clarification questions in Piazza. Debugging questions, why is code not passing a test, are invalid questions to

post in Piazza. Use the Piazza folder finalquestions to post your questions; we will use the folder finalclarifications to post

clarifications (please, don’t use this folder). Before posting a question, check the finalclarifications folder.

• Posting of any kind of code in Piazza, during this assignment period, represents an academic integrity violation and will be

reported as such.

• You may not address questions other students post in Piazza (only TAs and instructors can address questions).

• You must work by yourself.

• You can use class resources (lecture notes, lecture/lab examples, videos, etc.), but no other resources (e.g., code from the web).

• Sharing of this assignment solutions represents an academic integrity violation and will be reported as such (even after the

semester is over).
• Submissions will be checked with cheating detection software.

• If you are an ADS student: The provided time period takes into consideration your time allocation. If you need any other

assistance, contact your instructor. Ignore this entry if you don’t know what an ADS student is.

Specifications

For this assignment you will implement methods for the classes MultipleChoice, ArrayUtilities, RecursionProblem, Refrigerator and

Store. You will find the classes in the sysImplementation package. A description of each method is provided below. A driver (that you

can ignore if you know what to implement) and associated output is provided at the end. This driver is part of the code distribution. The

driver relies on a class called Toaster that we have implemented for you. Regarding the code you need to implement:

• You don’t need to add comments to your code, but you must have good variable names, indentation and you should avoid code

duplication.

• At this point you may want to look at the classes you will find in sysImplementation. We have provided a shell for each method

you need to implement. You can also see the instance variables associated with each class.

• During the implementation of the above classes, you can add instance variables, constants (static final) and private methods,

except for the RecursionProblem class (see restrictions below).

• You can assume parameters are valid, unless we indicate otherwise (e.g., if the parameter is null throw …).

• Be careful with cutting and pasting text (e.g., from a Javadoc or the pdf file). We have seen instances where student code does

not work in the submit server, but works in Eclipse and the problem has to do with character set problems.

• You must provide an implementation for every method described below, otherwise your code will not work in the submit server.

If you don’t know what to do for a method, leave the body empty (void method) and for a method returning a value, return any

value that makes the code compile.

MultipleChoice Class Specification

This class provides multiple choice questions, where each method represents a question. To answer a question, replace the statement

throw new UnsupportedOperationException("Not Implemented");

with a return statement that returns a character. The following is an example of the kind of question we will provide and the answer you

need to provide:

 /* What we will provide */
 public static char question1() {

 /* Question #1

 This course is:

 a. cmsc106

 b. cmsc131

 c. cmsc200

 d. None of the above

 */

 throw new UnsupportedOperationException("Not Implemented");

 }

/* You will replace the throw statement with a return and a character */
 public static char question1() {

 /* Question #1

 This course is:

 a. cmsc106

 b. cmsc131

 c. cmsc200

 d. None of the above

 */

 return 'b';
 }

There is a release test for the multiple choice class. If you pass the release test, it does not mean you got the right answers; it

means that you have provided an answer for each question .

ArrayUtilities Class Specification

This class defines the methods:

1. makeArrayCopy - The method’s prototype is provided below. The method returns a deep copy of the data array parameter.

You can assume the array parameter will never be null, however, it can be empty. This method will not throw any exceptions.

public static int[] makeArrayCopy(int[] data)

2. getNumberRowsSetToNullOrEmpty - The method’s prototype is provided below. The method returns the number of rows in

the data array parameter that are set to null or are empty (length of 0). The data array is a ragged array and data will never be

null. This method will not throw any exceptions.

public static int getNumberRowsSetToNullOrEmpty(int[][] data)

3. getArrayCopyWithoutNullEmptyRows - The method’s prototype is provided below. The method returns an array with deep

copies of rows from the data array parameter that are not null or that are not empty. The data array is a ragged array and data

will never be null. This method will not throw any exceptions. Feel free to use the previous methods during the implementation

of this method.

public static int[][] getArrayCopyWithoutNullEmptyRows(int[][] data)

Recursion Problem Class Specification

The RecursionProblem class defines a single method called removeDigits whose prototype is provided below. The method is a

recursive method that returns a string where all digits present in the str parameter have been removed. For this problem you can only

use the following String class methods: isEmpty(), length(), charAt(), and substring(). You can use the Character.isDigit() method to

determine whether a character is a digit. The parameter will never be null, but it can be the empty string. Your solution must be

recursive, you may not use any iteration statement (for, while, do while), and you may not add instance variables nor static variables;

local variables are fine. Do not use the words for, while, or do in your code at all (not even in comments or variable names (e.g.,

doYourWork)) as our tests might think you are using an iteration statement. You can use one auxiliary method if you understand it is

necessary.

public static String removeDigits(String str)

Refrigerator Class Specification

The Refrigerator class represents a home refrigerator. A refrigerator has a brand (brand instance variable), a number of bins (bins

instance variable), and items (items instance variable). In addition, a constant representing a default number of bins is defined. The

declaration of each variable follows.

private String brand;

 private int bins;

 private StringBuffer items;

 private static final int DEFAULT_BINS_NUMBER = 10;

The Refrigerator class implements two interfaces: Appliance and Comparable. The method associated with the Appliance interface is:

public String getBrand();

The Refrigerator class methods are:

1. Constructor - Takes a string (representing the brand) and an integer (representing the number of bins) as parameters, and

initializes the corresponding instance variables, accordingly. It creates a StringBuffer object and assigns it to the items instance

variable. You can assume the parameters are valid (e.g., string parameter is not null).

2. Constructor - Takes a string (representing the brand) as parameter. It initializes the brand instance variable using the parameter

value, and the number of bins with the DEFAULT_BINS_NUMBER value. You can implement this method by using “this” in

order to call another constructor.

3. Copy Constructor - Initializes the current object in such a way that changes to the current object will not affect the parameter.

4. getBrand - get method for brand.

5. getBins - get method for bins.

6. addItem - Appends the provided string parameter to the items Stringbuffer if the string parameter is not null. Do not add any

delimeter (e.g., a comma) as part of the append process. The method always returns a reference to the current object. If the

parameter is null an IllegalArgumentException (with any message) will be thrown.

7. equals - Defines an equals method for the class. Two Refrigerator objects are considered equal if they have the same brand and

the same number of bins.

8. compareTo - Returns a negative value if the current object has a number of bins less than the parameter, a positive value if the

current object has a number of bins larger than the parameter, and 0 if the number of bins is the same. You can assume the

parameter will never be null.

9. toString() - We have provided this method; do not modify it, otherwise you might not pass release / secret tests.

Store Class Specification

The Store class represents a refrigerator store. A store has a name (name instance variable), an array of references to Refrigerator

objects (refrigerators instance variable), and the current number of Refrigerator objects (numberOfRefrigerators instance

variable). Keep in mind that the current number of Refrigerator objects is not necessarily the same as the length of the refrigerators

array. The declaration of each variable follows.

 private String name;

 private Refrigerator[] refrigerators;

 private int numberOfRefrigerators;

The Store class methods are:

1. Constructor - Takes a string (representing the store’s name) and an integer (representing the maximum number of

refrigerators we can have) as parameters. It creates an array of Refrigerator references with a size corresponding to the

integer parameter. It initializes the current number of refrigerators (numberOfRefrigerators instance variable) to 0.

2. addRefrigerator - Takes as parameters a string (representing the refrigerator’s brand), and an integer (representing the number

of bins for the refrigerator). The method will create a Refrigerator object and assign it to the next available array entry (if there

is one). Assuming no refrigerators have been added, the first available entry will be the one associated with index 0; the next

one the one associated with index 1, etc. If no array entry is available, no addition will take place. The method always returns a

reference to the current object. No exception is thrown by this method.

3. getCountWithBinsInRange - This method takes two integer parameters representing a lower bound and upper bound for the

number of bins in a refrigerator. The method will return the number of refrigerators that have a number of bins that fall in the

specified range.

4. getRefrigerators - This method returns an array with copies of Refrigerator objects that have a number of bins that falls in the

range specified by the two integer parameters. The kind of copying you are required to do is one where modifications to the

returned array will not affect any of the Refrigerator objects that are part of the store. Feel free to use the previous method

during the implementation of this method. An empty array will be returned if no refrigerators are found in the specified range.

5. getRefrigeratorsWithNumberOfBins - This method takes an ArrayList<Appliance> parameter and an integer parameter

representing a number of bins. It will return an ArrayList<Refrigerator> with references to those objects in the

ArrayList<Applicance> parameter that have a number of bins corresponding to the integer parameter. Remember that the

ArrayList<Appliance> parameter can have objects other than refrigerators (e.g., Toaster objects, where Toaster is class that

implements the Appliance interface). Notice that you don’t need to implement the Toaster class.

6. toString() - We have provided this method; do not modify it, otherwise you might not pass release / secret tests.

Driver / Expected Output (Feel free to ignore)

Driver

 public static void main(String[] args) {

 String answer = "", brand = "GE";

 int bins = 20;

 Refrigerator r1 = new Refrigerator(brand, bins);

 r1.addItem("milk").addItem("cheese");

 answer += r1 + "\n";

 Refrigerator r2 = new Refrigerator("Cheap", 5);

 answer += r2 + "\n";

 Refrigerator r3 = new Refrigerator("Sony", 20);

 r3.addItem("lettuce").addItem("tomato").addItem("cheese");

 answer += r3 + "\n";

 answer += "Brand: " + r1.getBrand() + "\n";

 answer += "Bins: " + r1.getBins() + "\n";

 answer += "Equality: " + r1.equals(r2) + "\n";

 answer += "Comparison: " + (r1.compareTo(r2) < 0 ? true : false) + "\n";

 answer += "==\n";

 Toaster t1 = new Toaster("Sharp", 35);

 t1.setToastingLevel(50);

 answer += t1 + "\n";

 Toaster t2 = new Toaster("LG", 100);

 t2.setToastingLevel(10);

 answer += t2 + "\n";

 answer += "==\n";

 int maxRefrigerators = 60;

 Store store = new Store("TerpMart", maxRefrigerators);

 store.addRefrigerator("Sony", 20).addRefrigerator("LG", 15);

 store.addRefrigerator("Sharp", 8).addRefrigerator("GE", 4);

 answer += "Store:\n";

 answer += store + "\n";

 answer += "Number of Refrigerators with bins in range: " + store.getCountWithBinsInRange(8, 16);

 answer += "\nRefrigerators in range:\n";

 Refrigerator[] found = store.getRefrigerators(8, 16);

 for (Refrigerator refrigerator : found) {

 answer += refrigerator + "\n";

 }

 answer += "==\n";

 ArrayList<Appliance> appliances = new ArrayList<Appliance>();

 appliances.add(r1);

 appliances.add(r2);

 appliances.add(r3);

 appliances.add(t1);

 appliances.add(t2);

 answer += "\nAll Applicances:\n";

 answer += appliances + "\n\n";

 answer += "***Only Refrigerators with number of bins: " + bins + "\n";

 answer += Store.getRefrigeratorsWithNumberOfBins(appliances, bins);

 answer += "\n==\n\n";

 String str = "blue8Hou9se";

 answer += "Before removing digits: " + str + "\n";

 answer += "After removing digits: " + RecursionProblem.removeDigits(str) + "\n";

 answer += "==\n\n";

 int[][] data = { { 10, 30 }, null, { 8 }, null, {} };

 answer += "NumberRowsNullOrEmpty: " + ArrayUtilities.getNumberRowsSetToNullOrEmpty(data);

 answer += "\n==\n\n";

 int[][] result = ArrayUtilities.getArrayCopyWithoutNullEmptyRows(data);

 answer += "ArrayCopyWithoutNullEmptyRows: ";

 for (int i = 0; i < result.length; i++) {

 answer += Arrays.toString(result[i]);

 }

 answer += "\n==\n\n";

 System.out.println(answer);

 }

Output

Refrigerator [brand=GE, bins=20, items=milkcheese]

Refrigerator [brand=Cheap, bins=5, items=]

Refrigerator [brand=Sony, bins=20, items=lettucetomatocheese]

Brand: GE

Bins: 20

Equality: false

Comparison: false

==

Toaster [brand=Sharp, cost=35, toastingLevel=50]

Toaster [brand=LG, cost=100, toastingLevel=10]

==

Store:

Name: TerpMart

Refrigerators:

Refrigerator [brand=Sony, bins=20, items=]

Refrigerator [brand=LG, bins=15, items=]

Refrigerator [brand=Sharp, bins=8, items=]

Refrigerator [brand=GE, bins=4, items=]

Number of Refrigerators with bins in range: 2

Refrigerators in range:

Refrigerator [brand=LG, bins=15, items=]

Refrigerator [brand=Sharp, bins=8, items=]

==

All Applicances:

[Refrigerator [brand=GE, bins=20, items=milkcheese], Refrigerator [brand=Cheap, bins=5, items=], Refrigerator

[brand=Sony, bins=20, items=lettucetomatocheese], Toaster [brand=Sharp, cost=35, toastingLevel=50], Toaster

[brand=LG, cost=100, toastingLevel=10]]

***Only Refrigerators with number of bins: 20

[Refrigerator [brand=GE, bins=20, items=milkcheese], Refrigerator [brand=Sony, bins=20,

items=lettucetomatocheese]]

==

Before removing digits: blue8Hou9se

After removing digits: blueHouse

==

NumberRowsNullOrEmpty: 3

==

ArrayCopyWithoutNullEmptyRows: [10, 30][8]

==

