QERSIT

. 0, University of Maryland College Park

) Department of Computer Science
s CMSC131 Spring 2023
Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

‘!’ //
TRyL

STUDENT ID (e.g. 123456789):

Instructions

e Please print your answers and use a pencil.

e Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.

e To make sure Gradescope can recognize your exam, print your name, write your directory id at the bottom of pages with the text
Directoryld, provide answers in the rectangular areas provided, and do not remove any exam pages. Even if you use the provided
extra pages for scratch work, they must be returned with the rest of the exam.

This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 100 total points.

Your code must be efficient.

Multiple choice questions have only one answer unless indicated otherwise.

You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only
#1		Problem #1 (Short Answers — 3 pts each)		24
#2		Code 1		34
#3		Code 2		42
Total		Total		100

Problem #1 (Short Answers — 3 pts each)

1. Given the code below:

ArrayList<String> aList = new ArrayList <String>();
alList.add("Third");
String [] strArray = {"Exam", null};

System.out.println(strArray [1]); // Third Exam

Finish the missing line that assigns to the second element of the array the concatenation of the first element of the ArrayList
with a space and the first element of array. Your code cannot have the string literals “Third” or “Exam” in it.

2. What will display after the code below runs?

Stack<Integer> s = new Stack<>();
s.push(5); s.pop();

s.push(7); s.push(8);

s.pop();
System.out.println(s.pop()*2);

3. allows you to focus on what code does and not how.

4. Circle the three headers below that would be valid overloads of the method with this header:
public static int e3(int x)

public static void e3(int x)

public static void e3(int x, int y)
public static void e3(String s)
public static int exam3(int x)
public static void e3(double y)

a0 o

Assume the following 4 files all in the same package. Use the code below for questions 5 to 8.

public interface Exam { public class Exam2 implements Exam{
String whichExam(); public String whichExam() {
} return "E2";
}
}
public class Exam3 implements Exam{ public class Driver {
public String whichExam() { public static void main(String[] args) {
return "E3";
} /*HERE*/
public int points(){ }
return 100; }
}
}

5. Assume the following code replaces the /*HERE* / comment in the driver:

Exam e[] = {new Exam2(), new Exam3(

}oi
System.out.println(e[0].whichExam());

)
)

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,
write the output.

SAME EXACT CODE AS PAGE 1. JUST DUPLICATED ON THIS PAGE

public interface Exam { public class Exam2 implements Exam{
String whichExam(); public String whichExam() {
} return "E2";
}
}
public class Exam3 implements Exam{ public class Driver {
public String whichExam() { public static void main(String[] args) {
return "E3";
} /*HERE*/
public int points(){ }
return 100; }
}
}

Assume the following code replaces the /*HERE*/ comment in the driver:

Exam el = new Exam2();
System.out.println(((Exam3)el).points());

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,
write the output.

Assume the following code replaces the /*HERE*/ comment in the driver:

Exam e2 = new Exam2();
System.out.println(((Exam2)e2).points());

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,
write the output.

Assume the following code replaces the /*HERE*/ comment in the driver:

Exam e3 = new Exam3();
System.out.println(((Exam3)e3).points());

If the code above will not compile, write NC. If it will compile, but throw an exception, write CE. If it will compile and run,
write the output.

Directory id:

Problem #2 (Code 1 — 34 pts)

Complete the implementation of TwoSums. Assume that input isnot null. If key is not in input, simply return null. Ifitis
in input, return an int array with 2 elements. The first element will have the sum of all the integers to the left of the first instance
of key, and the second element will have the sum of all the integers to the right of the first instance of key. The value of key is
never included in the either sum even if it occurs more than once.

public static void main(String[] args) {

int []1 a= {51713161417191717111718};

System.out.println(Arrays.toString(TwoSums(a,7))); // [5, 31]
System.out.println(Arrays.toString(TwoSums(a,9))); // [32, 30]
System.out.println(Arrays.toString(TwoSums(a,l))); // [55, 15]
System.out.println(Arrays.toString(TwoSums(a,5))); // [0, 66]
System.out.println(Arrays.toString(TwoSums(a,8))); // [63, 0]
System.out.println(Arrays.toString(TwoSums(a,18))); // null

int [] b = {};
System.out.println(Arrays.toString(TwoSums(b,18))); // null
int []1 ¢ = {7,7,7};

System.out.println(Arrays.toString(TwoSums(c,18)

)); // null
System.out.println(Arrays.toString(TwoSums(c,7)));

// [0, 0]

public static int[] TwoSums(int [] input, int key) {

//In case you need more room for Code 1

Directory id:

Problem #3 (Code 2 — 42 pts)

Complete the implementation of makeArray. Assume that input isnot null. The method will return a 1-D array of int that
contains integers from rows of input that have no null elements. The integers will appear in the returned array row after row.
For example, in the driver you see that the integers from row 1 (index 0) and row 4 are in the answer, however the second row which
is null, the third row which has a nul1l element, and the 5" row which is empty are not included.

Although not required, you may use an ArrayList to help you keep track of information as you process input. However, if you
do so, remember that you may only use the default constructor to make your ArrayList, the get method, the add method, and the
size method. Again, your returned value is an array (not an ArrayList) of int (not Integer) with exactly the number of elements
needed for the qualifying values.

public static void main(String[] args) {

Integer [][] arr = new Integer[5][];
arr[0] = new Integer []{5,7,12};

arr[1l] = null;
arr[2] = new Integer []{0,null,8,15};
arr[3] = new Integer []{3,4,5,6,8};

arr[4] = new Integer []1{};
System.out.println(Arrays.toString(makeArray(arr)));

Integer [][] arrl = new Integer[3][];
arr[0] = null;
arr[1] null;
arr[2] = new Integer []{0,null,8,15};

System.out.println(Arrays.toString(makeArray(arrl)));

Output of main

public static int[] makeArray(Integer [][] input) {

Directory id:

EXTRA PAGE IN CASE YOU NEED IT FOR CODE 2

LAST PAGE

