
 1

University of Maryland College Park
Department of Computer Science

CMSC131 Spring 2022
Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

• Please print your answers and use a pencil.
• Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.
• To make sure Gradescope can recognize your exam, print your name, write your directory id at the bottom of pages with the text

DirectoryId, provide answers in the rectangular areas provided, and do not remove any exam pages. Even if you use the provided
extra pages for scratch work, they must be returned with the rest of the exam.

• This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 100 total points.
• Your code must be efficient.
• Multiple choice questions have only one answer unless indicated otherwise.
• You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem #1 (Short Answers - 2pts each) 16
#2 Memory Map 24
#3 Coding 60

Total Total 100

KEY

K

 2

Problem #1 (Short Answers – 2 pts each)

1. (2 pts) Double is the wrapper class for the primitive type double (Your answer needs to be case-sensitive or will be marked

wrong).

2. (2 pts) A Java interface can have abstract methods, meaning that the body of the method is missing.

3. (2 pts) The signature of a method includes its name and parameter list.

4. (2 pts) Show how you would declare a variable called myList that can reference an ArrayList of integers and assign to it an
empty ArrayList object (should be all done in one line).

 ArrayList <Integer> myList = new ArrayList<>();

Assume the following 4 files all in the same package. Use the code below for questions 5 to 8.

 public interface Exam3Interface {
 public String whichTerm();

 }

 public class Exam3SP22 implements Exam3Interface{
 public String whichTerm() {
 return "SP22";
 }

 }

 public class Exam3F21 implements Exam3Interface{
 public String whichTerm() {
 return "F21";
 }
 }

public class Driver {
 public static void main(String[] args) {
 //code for problem 7 and 8
 }
}

5. (2 pts) Adding the field: public int total; to the class Exam3SP22 will cause a compilation error since the field is

not also in the Exam3Interface. True or False? False

6. (2 pts) Adding the method: public int a() {return 0;} to the class Exam3SP22 will cause a compilation error

since the method is not also in the Exam3Interface. True or False? False

7. (2 pts) The following statement in the main method would cause a compilation error.

Exam3Interface e = new Exam3Interface(); True or False? True

8. (2 pts) The following statement in the main method would cause a compilation error since the types are different.

Exam3Interface e = new Exam3F21(); True or False? False

 3

Problem #2 (Memory Map – 24 pts)

Draw a memory map for the following program up to the point in the program execution indicated by the comment /*HERE*/.
Indicate where each frame starts and ends in the stack. Remember not to draw the frame for methods that would have finished by the
time we reach the stopping point (/* HERE */).

public class Exam {
 public String name;
 public int total;
 public Exam(String name, int total) {
 this.name = name;
 this.total = total;
 }
 public void setTotal(int total) {
 this.total = total;
 }

}

public class MemMaps {

 public static void myMethod(Exam []e) {
 Exam []eLocal = {new Exam("Test1",200)};
 e[1].setTotal(100);
 e = eLocal;
 e[0].setTotal(150);
 /* HERE */
 }

 public static void main(String[] args) {
 Exam []eList = {new Exam("e1",75),
 new Exam("e2", 80)};
 myMethod(eList);
 }

}

 Directory id:

 4

Problem #3 (Coding – 60 pts)

Complete the implementation of a class called csStudent that represents a CS student. A csStudent has an id (id instance
variable), and 2D array where each row holds information about the projects completed by the CS student during one academic year
(proj instance variable). You are given all the code of the csStudent and only need to complete the following 3 methods: 1)
arrayCleaner, 2) csStudent constructor, 3) makePortfolio. You are also given the entire code for the Project class
that represents a CS project, where the difficulty level is an integer from 0 to 5 with 0 being the easiest and 5 being the hardest.

public class Project {
 private String name;
 private int difficultyLevel;

 public Project(String name, int difficultyLevel) {
 this.name = name;
 this.difficultyLevel = difficultyLevel >=0 && difficultyLevel <=5? difficultyLevel: 5;
 }
 public int getDifficultyLevel() {
 return difficultyLevel;
 }
 public String toString() {
 return "(" + name + ": " + difficultyLevel + ")";
 }

}

import java.util.Arrays;

public class csStudent {

 private int id;
 private Project [][]proj;

 public static void arrayCleaner(Project[][] p){
 //YOUR CODE IS ANSWER TO P3 #1
 }

 public csStudent(int id, Project[][] p) {
 //YOUR CODE IS ANSWER TO P3 #2
 }

 public Project[] makePortfolio() {
 //YOUR CODE IS ANSWER TO P3 #3
 }

 public static String str2DArray(Project[][] p){

 String retVal ="";
 if(p!=null) {
 for (int i =0; i<p.length; i++)
 retVal+=Arrays.toString(p[i])+"\n";
 }
 return retVal;
 }

 public String toString() {
 return "id=" + id + "\n" + str2DArray(proj);
 }

 public static void main(String[] args) {

 Project[][] p = { {new Project ("P1", 3), null, new Project ("P2", 3)},
 null, //row is null
 {}, //row is empty
 {new Project ("p1", 4), new Project ("p2", 5), new Project ("p3", 4)},
 {null, new Project ("A", 5), new Project ("B", 5), new Project ("C", 5)}
 };

 System.out.println(str2DArray(p));
 System.out.println("-------------------------");

 csStudent s1 = new csStudent(123, p);

 5

 System.out.println(str2DArray(p)); //the argument after running arrayCleaner in constructor
 System.out.println("-------------------------");
 System.out.println(s1);
 System.out.println("-------------------------");

 p[0]=p[1]=p[3]= null;
 p[4][0] =new Project ("Changed",3);
 p[4][1] =null;

 System.out.println(str2DArray(p)); //p has now changed
 System.out.println("-------------------------");
 System.out.println(s1); //but not proj field of s1
 System.out.println("-------------------------");
 System.out.println(Arrays.toString(s1.makePortfolio()));
 }
}

Output of the main method

[(P1: 3), null, (P2: 3)]
null
[]
[(p1: 4), (p2: 5), (p3: 4)]
[null, (A: 5), (B: 5), (C: 5)]

[(P1: 3), (Easy Project: 0), (P2: 3)]
[(Easy Project: 0)]
[(Easy Project: 0)]
[(p1: 4), (p2: 5), (p3: 4)]
[(Easy Project: 0), (A: 5), (B: 5), (C: 5)]

id=123
[(P1: 3), (Easy Project: 0), (P2: 3)]
[(Easy Project: 0)]
[(Easy Project: 0)]
[(p1: 4), (p2: 5), (p3: 4)]
[(Easy Project: 0), (A: 5), (B: 5), (C: 5)]

null
null
[(Easy Project: 0)]
null
[(Changed: 3), null, (B: 5), (C: 5)]

id=123
[(P1: 3), (Easy Project: 0), (P2: 3)]
[(Easy Project: 0)]
[(Easy Project: 0)]
[(p1: 4), (p2: 5), (p3: 4)]
[(Easy Project: 0), (A: 5), (B: 5), (C: 5)]

[(P2: 3), (Easy Project: 0), (Easy Project: 0), (p2: 5), (C: 5)]

1. The purpose of the arrayCleaner method is to potentially modify the passed in 2D array so that each row has at least

one element. First, check to see if the parameter is null or if the 2D array has no rows. If that is the case, simply throw the
IllegalArgumentException with the message "ERROR - Parameter is null or has no rows". At
this point, you have established that the array has at least one row. If a row is null or an empty array, make that row reference
a 1-D array of Project with one element, where the element references a Project with the name “Easy Project”
and difficultyLevel of 0. If a row references an array with an element that is null, make the element reference a
Project with the name “Easy Project” and difficultyLevel of 0. If an element in a row is not referencing
null, make no changes to it. Notice that even though the method is void, the changes made to the parameter will persist after
the method returns. You can see this by looking at the output of the variable p in the sample main before and after the
constructor call (the constructor will call arrayCleaner).

 Directory id:

 6

public static void arrayCleaner(Project[][] p)
 {
 if (p==null || p.length ==0){ //if null or empty
 throw new IllegalArgumentException("ERROR - Parameter is null or has no rows");
 }

 for(int i =0; i<p.length; i++)
 {
 if(p[i]==null || p[i].length ==0) //if null or empty row
 {
 p[i]= new Project[1];
 p[i][0] = new Project ("Easy Project", 0);
 }
 else {
 for(int j =0; j<p[i].length; j++)
 {

 if(p[i][j]==null)
 {
 p[i][j] = new Project ("Easy Project", 0);
 }

 }
 }

 }

 }

 7

2. Next, code the csStudent constructor. First, use a try/catch clause to call arrayCleaner on the parameter p. If the
exception is caught, simply use System.out.println to print the message and return from the constructor. Assuming
the exception is not thrown by arrayCleaner, finish up the code in the constructor by assigning the id parameter to the
id field (no error checking needed) and make an independent duplicate 2D array structure (i.e. same number of rows and
columns, and same Project references) of the parameter p and assign the copy to the field proj. Notice that since
Project is an immutable class, assigning the references found in the elements of p to the corresponding elements of
proj is fine, but the rows and columns of the proj field have to be separate from p. If done correctly, changes to p after
the constructor call will not modify the proj field as seen in the sample main. You must write all the code that makes the
duplicate array without resorting to any library calls that help in duplicating an array.

public csStudent(int id, Project[][] p) {
 try {
 arrayCleaner(p);
 }
 catch (IllegalArgumentException e) {
 System.out.println(e.getMessage());
 return;
 }
 //at least one row with one cell at this point

 this.id = id;

 proj = new Project[p.length][]; //same # of rows as p

 for (int i =0; i<proj.length; i++)
 proj[i] = new Project[p[i].length]; //same # of cells for each row

 for (int i =0; i<proj.length; i++)
 for (int j =0; j<proj[i].length; j++)
 proj[i][j] = p[i][j];

 }

Directory id:

 8

3. The makePortfolio method returns a 1D array of Project where the element at index i references the most difficult
project in row i of the proj field. Since this instance method can only be called by an existing csStudent (i.e. the
constructor and therefore arrayCleaner has already been called), you know that each row has at least one Project. If
more than one project in a row i have the same highest difficulty level, the last one should be assigned to the array element
i.

public Project[] makePortfolio() {
 Project[] portfolio = new Project[proj.length];
 for (int i =0; i<proj.length; i++)
 { int index = 0; //index of hardest
 int hard =0; //hardest project
 for (int j =0; j<proj[i].length; j++)
 {
 if (proj[i][j].getDifficultyLevel()>=hard)
 {
 hard =proj[i][j].getDifficultyLevel();
 index=j;
 }

 }
 portfolio[i]= proj[i][index];
 }

 return portfolio;

 }

 9

EXTRA PAGE IN CASE YOU NEED IT

LAST PAGE

Directory id:

