
 1

University of Maryland College Park
Department of Computer Science

CMSC131 Fall 2019
Exam #3

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

• Please print your answers and use a pencil.
• This exam is a closed-book, closed-notes exam with a duration of 50 minutes and 200 total points.
• Do not remove the exam’s staple. Removing it will interfere with the scanning process (even if you staple the exam again).
• Write your directory id (e.g., terps1, not UID (e.g., 111222333)) at the bottom of pages with DirectoryId.
• Provide answers in the rectangular areas.
• Do not remove any exam pages. Even if you don’t use the extra pages for scratch work, return them with the rest of the exam.
• Your code must be efficient and as short as possible.
• If you continue a problem on the extra page(s) provided, make a note on the particular problem.
• For multiple choice questions you can assume only one answer is expected, unless stated otherwise.
• You don’t need to use meaningful variable names; however, we expect good indentation.
• You must write your name and id at this point (we will not wait for you after time is up).
• You must stop writing once time is up.

Grader Use Only

#1 Problem #1 (Memory Map) 40
#2 Problem #2 (Recursion) 30
#3 Problem #3 (Arrays) 130

Total Total 200

 2

Problem #1 (Memory Map)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE */.
Remember to draw the stack and the heap. If an entry has a value of null write NULL. If an entry has a value of 0 do not leave it
blank; write 0.

public class MemMap {
 public static void process(StringBuffer[] data, String elem) {
 data[2].append(elem);
 data[1] = null;
 elem = null;
 StringBuffer[] copy = data;
 /* HERE */
 }

 public static void main(String[] args) {
 StringBuffer[] names = new StringBuffer[4];

 names[0] = new StringBuffer("AVW");
 names[1] = names[0];
 names[2] = new StringBuffer("Iribe");
 String prof = "Alvin";
 process(names, prof);
 }
}

 3

Problem #2 (Recursion)

1. Implement a RECURSIVE method called printReverse that prints a string in reverse order. For example, calling
 printReverse("Kelly") will return ylleK. If you use any loop construct (e.g., while, do while, for) or add any auxiliary
 method you will automatically receive 0 credit. You can assume the str parameter will never be null.

 public static void printReverse(String str)

2. Implement a RECURSIVE method called dupChar that returns a new string where the target character parameter has been
 duplicated in the str parameter. For example, calling dupChar("enter", 'e') will return eenteer. If you use any loop construct
 (e.g., while, do while, for) or add any auxiliary method you will automatically receive 0 credit. You can assume the str parameter
 will never be null.

 public static String dupChar(String str, char target)

DirectoryId:

 4

Problem #3 (Arrays)

Complete the implementation of the class Train that represents a train. A train is associated with an array of RailCar objects (cars
instance variable) and the number of railcars (numCars instance variable) it has. A RailCar object has a maximum number of
passengers it can carry (maxCapacity instance variable), the current number of passengers (numPassengers instance variable) and a
StringBuffer (passengers instance variable) that will hold the passengers’ names. A passenger will be added to a railcar only if there
is a space. For this problem you MAY not modify the RailCar class. Below we have provided a driver that illustrates the functionality
associated with the class. Feel free to ignore it if you know what to implement. The driver relies on methods (e.g., toString()) you
don’t need to implement. You MAY NOT add any methods beyond the ones specified below (not even private); if you do you will
lose credit.

public class RailCar {
 private int maxCapacity, numPassengers;
 private StringBuffer passengers;

 public RailCar(int maxCapacity) {
 this.maxCapacity = maxCapacity;
 numPassengers = 0;
 passengers = new StringBuffer();
 }

 public boolean addPassenger(String name) {
 if (numPassengers < maxCapacity) {
 numPassengers++;
 passengers.append(name);
 return true;
 }
 return false;
 }
 public int getNumPassengers() { return numPassengers; }
 public StringBuffer getPassengers() { return new StringBuffer(passengers); }
 public String toString() { return numPassengers + ", " + passengers; }
}

/* Train Class */
public class Train {
 private RailCar[] cars;
 private int numCars;
}

Driver

int numCars = 6, maxCapacity = 2;
Train train = new Train(numCars, maxCapacity);

train.addPassenger("Tom", 1);
train.addPassenger("Kelly", 1);
train.addPassenger("Rose", 0);
train.addPassenger("Mary", 3);

System.out.println(train);
train.removeEmptyCars();
System.out.println("After removing empty cars");
System.out.println(train);

Output

Car: #0-Rose
Car: #1-TomKelly
Car: #2-
Car: #3-Mary
Car: #4-
Car: #5-

After removing empty cars
Car: #0-Rose
Car: #1-TomKelly
Car: #2-Mary

 5

1. Is there a privacy leak in the following getCars() method if it is added to the Train class? Yes or No.

public RailCar[] getCars() { return cars; }

2. Define a constructor that takes as parameters two integer parameters called numCars and maxCapacity. The constructor will

initialize the cars instance variable with an array of RailCar objects that has a size corresponding to the numCars parameter.
Each railcar will have a capacity that corresponds to the maxCapacity parameter. If the numCars and/or maxCapacity
parameters are less than one, the constructor will throw an IllegalArgumentException with the message “Error”. Make sure you
initialize any other instance variable accordingly.

DirectoryId:

 6

3. Define a default constructor that initializes a train with 2 railcars where each has a maximum capacity of 10 passengers. You
must call the previous constructor in order to implement this constructor, otherwise you will not get any credit.

4. Define a method called addPassenger that adds a passenger with a specified name to the train. The method takes two parameters:

a string called name (passenger’s name) and an integer called carIndex. If the carIndex is different than -1, the passenger will be
added to the railcar that has an index corresponding to carIndex (e.g., the first car has a carIndex value of 0). For this case you
can assume there is a car with that index value. If the carIndex is -1, the passenger will be added to the first railcar that can fit the
passenger. The method will return -1 if the specified railcar (case where carIndex is different than -1) is full, or if there is no
railcar to which the passenger can be added (case where carIndex is -1); otherwise the method will return the index of the railcar
where the passenger was added.

 7

5. Define a method called removeEmptyCars that updates the cars array instance variable with an array where railcars that have no
passengers have been removed. You need to create a new array that will only have the railcars that have passengers. You do not
need to make copies of the RailCar objects. Make sure you initialize any instance variables accordingly. The method will return a
reference to the current object.

DirectoryId:

 8

EXTRA PAGE IN CASE YOU NEED IT (RETURN WITH EXAM)

LAST PAGE

