
 1

University of Maryland College Park

Dept of Computer Science

CMSC131 Spring 2011

Midterm II

First Name (PRINT): ___

Last Name (PRINT): ___

University ID: ___

Section/TAName: ___

I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions

 This exam is a closed-book and closed-notes exam.

 Total point value is 100 points.

 The exam is a 50 minutes exam.

 Please use a pencil to complete the exam.

 WRITE NEATLY. If we cannot understand your answer, we will not grade it (i.e., 0 credit).

Grader Use Only

#1 Problem 1 (General Questions) (16)

#2 Problem 2 (Memory Map) (8)

#3 Problem 3 (Parsing/Exception) (20)

#4 Problem 4 (Class Definition) (56)

Total Total (100) (100)

 2

Problem 1 (16 pts)

1. (1 pt) Name one class discussed in class that is immutable. ___________________

2. (1 pt) When should we define a method as static?

3. (1 pt) What is the default value of reference instance variables of a class? ___________________

4. (2 pts) When is space for a local integer variable allocated and when is it recovered?

5. (2 pts) Why do we never use == to compare floating point numbers?

6. (1 pt) When is the finally block associated with exceptions executed?

7. (1 pt) In which area of memory are objects created? ___________________

8. (1 pt) When should we define a constant as a static constant? In other words, when should we use

static final vs. final while defining a constant?

9. (6 pts) Based on the following class, indicated whether the statements below are valid or invalid. Circle

your answer.

public class Computer {

 private String make;

 public Computer(String makeIn) { make = makeIn; }

 public void setMake(String makeIn) { make = makeIn; }

 public static void info() { System.out.println("Computer Sys"); }

}

a. Computer c1 = new Computer("sun"); // VALID / INVALID

c1.setMake("mars");

b. Computer c2 = null; // VALID / INVALID

c2.setMake("moon");

c. Computer c3 = new Computer("earth"); // VALID / INVALID

Computer.setMake("saturn");

d. Computer c4 = new Computer("venus"); // VALID / INVALID

c4.info();

e. Computer c5 = new Computer("jupiter"); // VALID / INVALID

 c5.make = "uranus";

f. Computer.info(); // VALID / INVALID

 3

Problem 2 (8 pts)

Draw a memory diagram showing both the stack and the heap at the moment this program reaches the point

marked /* HERE */

public class MemoryMap {

 public static void filter(StringBuffer state, int by) {

 state.append("now");

 by = 333;

 process(state, by);

 }

 public static void process(StringBuffer first, int last) {

 first = null;

 last = 200;

 /* HERE */

 }

 public static void main(String[] args) {

 StringBuffer orig = new StringBuffer();

 orig.append("cold");

 int val = 100;

 filter(orig, val);

 }

}

Stack Heap

 args

Stack Bottom

 4

Problem 3 (20 pts)

The method getMemorySize takes a string as a parameter that represents the amount of memory present in a

high definition camera. The string always starts with the letters H and D, and is followed by a number. The

following are some examples of valid strings: “HD100”, “HD2000”, “HD2”, “HD20500”, etc. The method

returns the number (an integer) that follows “HD” in the string. For this problem you can assume the caller will

provide a valid string or null. If null is provided, the method will throw an IllegalArgumentException with the

message “Invalid String”. For this problem:

1. Implement the getMemorySize method.

2. Complete the main method provided below so the exception is handled and the message “Invalid

String” is printed (using System.out.println) when the exception takes place.

3. Remember that the method charAt() returns the character at a particular position in a string.

public class Utilities {

 static Scanner sc = new Scanner(System.in);

 public static void main(String[] args) {

 // You must complete so exception is handled

 String val = sc.nextLine();

 System.out.println(getMemorySize(val));

 }

 public static int getMemorySize(String memType) {

 // You must write

 5

 6

Problem 4 (56 pts)

Implement a class named BillBoard according to the specifications below.

1. The class has the following private instance variables:

a. message  String variable

b. cost  integer variable

2. All the methods in the class are public, except the method validMessage that is private. A description

of each method follows:

a. validMessage  Takes as parameter a string. The method returns true if the string parameter

represents a valid message. A valid message is different from null and it has at least 3

characters.

b. Constructor  Takes two parameters: a string and an integer. If the string parameter represents

a validMessage, the instance variables will be initialized using the parameter values. You must

use the previous validMessage method to validate the string. If the string parameter is invalid,

the message instance variable will be initialized to “NOMessage” and the cost to 10.

c. Constructor  Takes a string as a parameter. It initializes the cost to 20. You MUST use

“this” in order to call the constructor you previously defined otherwise you will not get any

credit.

d. Copy Constructor

e. getMessage  Get method for the message instance variable.

f. toString()  Returns a string with the message followed by the cost (separated by one space).

g. equals()  Two objects are equal if they have the same message. The method should return

false if null is provided as a parameter value.

 7

 8

