
 1

University of Maryland College Park
Department of Computer Science

CMSC131 Spring 2023
Exam #2

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g. 123456789):

Instructions

• Please print your answers and use a pencil.
• Do not remove the staple from the exam. Removing it will interfere with the Gradescope scanning process.
• To make sure Gradescope can recognize your exam, print your name, write your directory id at the bottom of pages with the text

DirectoryId, provide answers in the rectangular areas provided, and do not remove any exam pages. Even if you use the provided
extra pages for scratch work, they must be returned with the rest of the exam.

• This exam is a closed-book, closed-notes exam, with a duration of 50 minutes and 100 total points.
• Your code must be efficient.
• Multiple choice questions have only one answer unless indicated otherwise.
• You don’t need to use meaningful variable names; however, we expect good indentation.

Grader Use Only

#1 Problem #1 (Short Answers - 2pts each) 16
#2 Write a method 14
#3 Write a class 70

Total Total 100

KEY

 2

Problem #1 (Short Answers – 2 pts each)

1. (2 pts) A default constructor of a class, has no parameters.

2. (2 pts) A static field is shared among all instances of a class.

3. (2 pts) The continue keyword can be used to skip the remainder of the current iteration in a loop and start a new one.

4. (2 pts) Which statement is true?
a. All fields in a class have to be reference types.
b. The control expression of a switch statement can be a double.
c. The default value for an int field is null.
d. A local int variable will not have a default value if not initialized with one.

5. (2 pts) Which statement is false?

a. A class can have more than one copy constructor
b. The keyword this can be used to call another constructor in the same class.
c. The parameter of the equals method for a class, should be of type Object.
d. If the last line in a method of the class Person is return this; the return type of the method can be Person.

6. (2 pts) Assume the following code fragment in a main method, what is the output?

 String s =null;
 try {
 s.length();
 System.out.println("Line 1");
 }
 catch(NullPointerException e){
 System.out.println("Line 2");
 }
 catch(Exception e){
 System.out.println("Line 3");
 }
 finally {
 System.out.println("Line 4");
 }

7. (2 pts) Which of the three types of copying that we discussed in class is demonstrated in the code below?

 StringBuffer s1 = new StringBuffer("ABC");
 StringBuffer s2 = s1;

8. (2 pts) Assume the following code fragment in a main method, what is the output?

 int [] x = {2,3};
 int [] y = x;
 y[0]= 2 > 3 ? --x[0]: x[1]++;
 System.out.println(x[0]);

Problem #2 (Write a method – 14 pts)

1. Complete the code for the method below . This method takes in an array of int called input and an int called num. If

the array has less than 2 elements or if the first element of the array is num, simply return. You can assume input will
not be null. Otherwise, starting at the beginning of the array, replace every occurrence of num in the array with the value to
its immediate left.

3

Line 2
Line 4

Reference copy

 3

int a[] = {5,7,3,6,14,7, 31,7,7,63,7,8};
int b[] = {5,7,7,7,7,7};
replace (a, 7);
replace (b, 7);
System.out.println(Arrays.toString(a)); //prints [5, 5, 3, 6, 14, 14, 31, 31, 31, 63, 63, 8]
System.out.println(Arrays.toString(b)); //prints [5, 5, 5, 5, 5, 5]

public static void replace (int [] input, int num)
{

 if (input.length <=1 || input[0] == num)
 return;
 for (int i =1; i <input.length;i++)
 {
 if (input[i]==num)
 input[i]=input[i-1];

 }

 }

Directory id:

 4

Problem #3 (Write a class)

Given the immutable class below (that you are not to modify in any way):

public class Player {
 private final int id;
 private final int skillLevel;

 public Player(int id, int skillLevel) {
 this.id = id;
 this.skillLevel = skillLevel;
 }
 public int getSkillLevel() {
 return skillLevel;
 }
 @Override
 public String toString() {
 return "[id=" + id + ", sL=" + skillLevel + "]";
 }
}

Complete the implementation of a class called Team that represents a team of up to 5 players . You MAY NOT add any methods other
than the ones specified below (not even private). Also you MAY NOT add any additional instance or static variables. Local variables
in your methods are fine.

import java.util.Arrays;

public class Team {

 private Player[] players;
 private int numOfPlayers;

 public Team() {
 //answer to P1
 }

 public Team(Team t) {
 //answer to P2
 }

 public void addPlayer(int id, int skillLevel) {
 //answer to P3
 }

 public Player[] getPlayers(){
 //answer to P4
 }

 public boolean equals(Object obj) {
 //answer to P5
 }

 @Override
 public String toString() {
 return Arrays.toString(players) + ", numOfPlayers=" + numOfPlayers;
 }

 public static Team mergeTeams(Team t1, Team t2) {
 //answer to P6
 }
}

 5

Driver

import java.util.Arrays;

public class Driver {

 public static void main(String[] args) {

 Team t1 = new Team();
 t1.addPlayer(123, 5);
 t1.addPlayer(124, 7);
 t1.addPlayer(125, 7);
 System.out.println(t1);

 Team t2 = new Team();
 t2.addPlayer(223, 10);
 t2.addPlayer(224, 9);
 System.out.println(t2);

 System.out.println(t1.equals(t2));

 Team t3 = Team.mergeTeams(t1, t2);
 System.out.println(t3);

 try {
 t3.addPlayer(321, 8);
 }
 catch (UnsupportedOperationException e){
 System.out.println(e.getMessage());
 }

 Team t4 = new Team(t2);
 t2.addPlayer(225, 3);
 System.out.println(t2);
 System.out.println(t4);

 Player temp [] =t2.getPlayers();
 System.out.println(Arrays.toString(temp));
 temp[0]=temp[1]=null;
 System.out.println(Arrays.toString(temp));
 System.out.println(t2);
 }
}

Output
[[id=123, sL=5], [id=124, sL=7], [id=125, sL=7], null, null], numOfPlayers=3
[[id=223, sL=10], [id=224, sL=9], null, null, null], numOfPlayers=2
true
[[id=123, sL=5], [id=124, sL=7], [id=125, sL=7], [id=223, sL=10], [id=224, sL=9]], numOfPlayers=5
already at 5 players
[[id=223, sL=10], [id=224, sL=9], [id=225, sL=3], null, null], numOfPlayers=3
[[id=223, sL=10], [id=224, sL=9], null, null, null], numOfPlayers=2
[[id=223, sL=10], [id=224, sL=9], [id=225, sL=3]]
[null, null, [id=225, sL=3]]
[[id=223, sL=10], [id=224, sL=9], [id=225, sL=3], null, null], numOfPlayers=3

Directory id:

 6

1. This constructor should assign a Player array with 5 elements to the players field. Since Player objects are not
added in this method, the elements will default to null. Set the numOfPlayers field to zero.

public Team() {

players = new Player[5]; //all 5 are null

numOfPlayers = 0;

}

2. Define a copy constructor method for the class. Changes to the copy should not affect the original object. Remember that
the Player class is immutable.

public Team(Team t) {

 players = new Player[5];

 for (int i =0; i < 5; i++)
 {
 players[i]=t.players[i]; //copy all over, even the null
 }

 numOfPlayers = t.numOfPlayers;

 }

 7

3. If the numOfPlayers field is 5, throw the UnsupportedOperationException with the message already at 5
players. Otherwise, make a new Player object, constructing it with the values passed into addPlayer. Assign the
reference of this Player object to next available element of the array referenced by the field players. Increment the
numOfPlayers field to indicate the number of players on the team has increased by one.

public void addPlayer(int id, int skillLevel) {

 if (numOfPlayers ==5)

 throw new UnsupportedOperationException("already at 5 players");

 players[numOfPlayers++]=new Player(id, skillLevel);

 }

4. This method returns a new Player array with the team’s players. The length should match the actual number of players
(i.e. it will not necessarily be 5). Remember that the Player class is immutable.

public Player[] getPlayers(){

 Player[] retVal = new Player[numOfPlayers];

 for (int i =0; i < numOfPlayers; i++)

 {

 retVal[i]= players[i];

 }

 return retVal;

 }

Directory id:

 8

5. Finish the equals method below. Two teams are equal if they have the same number of players OR if the sum of the skill
levels of the players in both teams are the same. Be careful to not get a NullPointerException!

public boolean equals(Object obj) {
 if (obj == this)
 return true;
 if (obj == null || getClass() != obj.getClass())
 return false;

 Team t = (Team) obj;

 int total1 =0, total2 =0;

 for (int i =0; i <5; i++)
 {
 if (players[i]!=null)
 total1 +=players[i].getSkillLevel();
 if (t.players[i]!=null)
 total2 +=t.players[i].getSkillLevel();
 }

 if (numOfPlayers ==t.numOfPlayers || total1==total2)
 return true;
 else
 return false;
 }

 9

6. If the sum of the players in t1 and t2 is greater than 5, simply return null. Otherwise, return a new Team object that has
the players from t1 followed by the players in t2 (with no null elements between the players). Do not forget to assign the
correct value to the numOfPlayers of the new object.

public static Team mergeTeams(Team t1, Team t2) {

 if (t1.numOfPlayers+t2.numOfPlayers>5)
 return null;

 Team retVal = new Team();
 int index =0;

 for (int i =0; i <t1.numOfPlayers; i++){

 retVal.players[index]=t1.players[i];
 index++;
 }

 for (int i =0; i <t2.numOfPlayers; i++){

 retVal.players[index]=t2.players[i];
 index++;
 }
 retVal.numOfPlayers =index;

 return retVal;

 }

 Directory id:

 10

EXTRA PAGE IN CASE YOU NEED IT

LAST PAGE

