Machine learning studies automatic methods for learning to make accurate predictions, to understand patterns in observed features and to make useful decisions based on past observations.
This course introduces theoretical machine learning, including mathematical models of machine learning, and the design and rigorous analysis of learning algorithms.
Here is a tentative list of topics. (Bullets do not correspond precisely to lectures.)
PAC learning basics, and PAC learning in Neural Networks
Boosting and unsupervised boosting
Graphical model basics
Spectral methods: a case study of consistent algorithms
Reinforcement learning
Take Home Midterm (20%)
Take Home Final (20%)
Homeworks (20%)
Participation(10%)
Course project(30%)
Monday/Wednesday 3:30pm-4:45pm
CSI 3117
Furong Huang
Office hours: Wednesday 4:45-5:45pm in IRB 4204
Chenghao Deng
Office hours: Friday 1:00-2:00pm in IRB 4119
Peihong Yu
Office hours: Friday 10:00-11:00am over zoom