
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

© 2022 Ashok Agrawala

February 23 1CMSC412 Set 3

Intel x86 Architecture by Changwoo Min is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.

February 23 CMSC412 Set 3 2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

X 86 vs x64

Operating mode Operating sub-mode
Operating

system required
Type of code being

run
Default address size Default operand size

Supported typical
operand sizes

Register file size

Long mode

64-bit mode

64-bit

64-bit code 64 bits 32 bits 8, 16, 32, or 64 bits 16 registers per file

Compatibility mode

32-bit code 32 bits 32 bits 8, 16, or 32 bits 8 registers per file

16-bit code 16 bits 16 bits 8, 16, or 32 bits 8 registers per file

Legacy mode

Protected mode

32-bit 32-bit code 32 bits 32 bits 8, 16, or 32 bits 8 registers per file

16-bit protected
mode

16-bit code 16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

Virtual 8086 mode
16-bit protected
mode or 32-bit

some of real mode
code

16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

Real mode 16-bit real mode real mode code 16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

February 23 CMSC412 Set 3 3

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode#The_386
https://en.wikipedia.org/wiki/Protected_mode#The_286
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Protected_mode#The_386
https://en.wikipedia.org/wiki/Protected_mode#The_286
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29

February 23 CMSC412 Set 3 4

Basic Execution Environment.

Memory ManagementRegisters
GDTR
LDTR
IDTR

TR

Control Registers
CR0
CR1
CR2
CR3
CR4

Debug Registers
Extended Control RegisterFebruary 23 CMSC412 Set 3 5

Operation Mode

 Protected mode
 This mode is the native state of the processor.

 Support virtual-8086 mode to execute “real-address mode”
8086 software in a protected, multi-tasking environment.

 Segmentation, 32bit addressing

 Real mode
 This mode implements the programming environment of the

Intel 8086 processor with extensions (such as the ability to
switch to protected or system management mode).

 The processor is placed in real-address mode following power-
up or a reset.

 16bit mode, Segmentation, 20bit addressing

February 23 CMSC412 Set 3 6

Memory Addresses

 Logical Address
 Included in the machine language instruction
 the address of an operand or of an instruction
 Consists of segment(16bit) and offset(32bit)

 offset - distance from the start of the segment to the actual address

 Linear Address (known as virtual address)
 A single 32-bit unsigned integer
 Range: 0x00000000~0xffffffff(4GB)

 Physical Address
 Used to address memory cells included in memory chips
 Represented as 32-bit unsigned integer

SEGMENTATION

UNIT
LogicalAddress Linear Address

PAGING

UNIT
PhysicalAddress

MMU(Memory Management Unit)
February 23 CMSC412 Set 3 7

Memory Models
•No segmentation
•Code, Data, stacks are all contained inthis
address space.
• 32 bit addressing

•Code, Data, stacks are typically containedin
separate segments for better isolation.
•32 bit addressing (32 bit offset, 16 bitseg.
selector)

•Compatibility mode for 8086 processor.
•20 bit addressing (16 bit offset, 16 seg.
selector)

February 23 CMSC412 Set 3 8

Privilege Level

 Code modules in lower privilege segments can only access
modules operating at higher privilege segments by means
of a tightly controlled and protected interface called gate.

 Attempts to access higher privilege segments without going
though a protection gate and without having sufficient
access rights causes a general-protection exception(#GP) to
be generated.

February 23 CMSC412 Set 3 10

February 23 CMSC412 Set 3 11

February 23 CMSC412 Set 3 12

General Purpose Registers (A, B, C and D)

64 56 48 40 32 24 16 8

R?X

E?X

?X

?H ?L

16 8

?S

Segment Registers
C,D,S,E,F and G

64 56 48 40 32 24 16 8

R?P

E?P

?P

?PL

Pointer Registers (S and B)

February 23 CMSC412 Set 3 13

Instruction Pointer Register (I)

64 56 48 40 32 24 16 8

RIP

EIP

IP

Index Registers (S and D)

64 56 48 40 32 24 16 8

R?I

E?I

?I

?IL

System Level Registers and Data
Structures

February 23 CMSC412 Set 3 14

Basic Program Execution Registers
 General-Purpose Registers

 For storing operands and pointers

 ESP – Stack pointer in the SS segment

 EBP – Frame pointer on the stack

 ECX – Counter for string and loop operations

 ESI – Source pointer for string operations

 EDI – Destination pointer for string operations.

February 23 CMSC412 Set 3 15

Basic Program Execution Registers
(cont’d)

 Segment Registers

 It holds 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory.

 To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

February 23 CMSC412 Set 3 16

Basic Program Execution Registers
(cont’d)

 Segment Selectors(16bit)

 Index(13bit) – Segment Descriptor entry in GDT, LDT

 TI (Table Indicator)(1bit)
 0 : Segment Descriptor is stored in GDT

 1 : Segment Descriptor is stored in LDT

 RPL(2bit) – Requested Privilege Level (CPL in CS)

INDEX TI RPL

Segment Selector
012315

Table Indicator

0 = GDT

1 =LDT

Requested Privilege Level (RPL)

Current Privilege Level (CPL) in CS
0 = the highest privilege level, kernel mode
1 = the lowest one, user mode

February 23 CMSC412 Set 3 17

Basic Program Execution Registers
(cont’d)

 Default Segment Selection Rules

 CS : Instructions

 All instruction fetches

 SS : Stack

 All stack pushes and pops. Any memory reference which uses the ESP or EBP
register as a base register.

 DS : Local Data

 All data references, except when relative to stack or string destination.

 ES : Destination Strings

 Destination of string instructions, eg. MOVS.

February 23 CMSC412 Set 3 18

Basic Program Execution Registers
(cont’d)

 EFLAGS Register
 The EFLAGS register report on the

status of the program being executed
and allows limited (application program
level) control of the processor.

 Some of the flags in the EFLAGS
register can be modified directly, using
special purpose instructions. There are
no instructions that allow the whole
register to be examined or modified
directly.

 When suspending a task, the processor
automatically saves the state of the
EFLAGS register in the task stack
segment(TSS) for the task being
suspended. When binding itself to a
new task, the task processor loads the
EFLAGS register with data from the new
task’s TSS.

February 23 CMSC412 Set 3 19

Basic Program Execution Registers
(cont’d)

 EIP (Instruction Pointer)

 The instruction pointer (EIP) register contains the offset in the current
code segment for the next instruction to be executed.

 It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

February 23 CMSC412 Set 3 20

Memory Management Registers

 The processor provides four memory-management
registers (GDTR, LDTR, IDTR an TR) that specify the
locations of the data structures which control
segmented memory management. Special instructions
are provided for loading and storing these registers.

February 23 CMSC412 Set 3 21

Control Registers

 Control registers determine operating mode of the
processor and the characteristics of the currently
running task.

•CR4: Contains a group of flags that
enable several architectural extensions,
and indicate operating system or
executive support for specificprocessor
capabilities.

• CR3: physical address of the pagedirectory

•CR2: page fault linear address

•CR0: System control flag
• PE flag

- 0/1 : real mode/protected mode
• PG flag

- 0: linear address == physicaladdress
- 1 : paging enable

• TS flag
- It causes the CPU to trap (int 7) if thefloating
point unit is used. It is used to restore FPU state
lazily after a taskswitch.

February 23 CMSC412 Set 3 22

February 23 CMSC412 Set 3 23

General Purpose Instructions

 The general-purpose instructions perform basic data movement,
arithmetic, logic, program flow, and string operations that
programmers commonly use to write application and system
software to run.

 Data Transfer Instructions

 MOV, CMOV, PUSH, POP, XCHG, …

 Binary Arithmetic Instructions

 ADD, SUB, INC, DEC, …

 Decimal Arithmetic Instructions

 Logical Instructions

 AND, OR, XOR, …

 Shift and Rotate Instructions

 SAR, SAL, ROR, ROL, …

 Bit and Byte Instructions

 BT, SET, TEST, …

 Control Transfer Instructions

 JMP, CALL, INT, RET, IRET, INTO,
BOUND, …

 String Instructions

 MOVS, LODS, CMPS, …

 IO Instructions

 IN, OUT, …

 EFLSGS Control Instructions

 STC, CLC, …

 Segment Register Instructions

 LDS, LES, LFS, LGS, LSS

 Misc. Instructions

 NOP, …February 23 CMSC412 Set 3 24

System Instructions

 The following system instructions are used to control those
functions of the processor that are provided to support
operating systems and executives.

 Manipulate memory management
register

 LGDT, LLDT, LTR, LIDT, SGDT, SLDT,
SIDT, STR

 Load and store control registers

 MOV {CR0~CR4}, CLI, STI

 Invalidate Cache and TLB

 INVD, WBINVD, INVLPG

 Performance monitoring

 RDPMC, RDTSC, RDTSCP

 Fast System Call

 SYSENTER, SYSEXIT

 Pointer Validation

 LAR, LSL, VERR, VERW, ARPL

 Misc.

 LOCK, CLTS, HLT

Privileged instructions in red
which can be executed only
in ring 0.

February 23 CMSC412 Set 3 25

February 23 CMSC412 Set 3 26

Segmentation & Paging

 Segmentation
 provides a mechanism for dividing the processor’s linear

address space into smaller protected address spaces
called segments.

 translate logical address to linear address

 Paging
 provides a mechanism for implementing a conventional

demand-paged, virtual-memory system where sections of
a program’s execution environment are mapped into
physical memory as needed. It can also be used to
provide isolation between multiple tasks.

 translate linear address to physical address

February 23 CMSC412 Set 3 27

Segmentation & Paging (cont’d)

GDT/LDT

TI

CR3

February 23 CMSC412 Set 3 28

Segmentation

 Logical address to linear address translation

 Segment Selector

•To reduce address translation time
and coding complexity, the processor
provides registers for holding up to 6
segment selectors.
• CS, SS, DS, ES, FS, GS

Current Privilege Level (CPL) in CS
0 = the highest privilege level, kernel mode
1 = the lowest one, user mode

February 23 CMSC412 Set 3 29

Segmentation (cont’d)

 Global and local descriptor tables

February 23 CMSC412 Set 3 30

Segmentation (cont’d)

 Segment Descriptors
 It is a data structure in a GDT or LDT that provides the

processor with the size and location of a segment, as well as
access control and status information.

11: Code/Data
9: Write-enable

10: Expansion-direction
8: Accessed

February 23 CMSC412 Set 3 31

Paging

 Linear address to physical address translation

LinearAddress

DIRECTORY TABLE OFFSET

+

Page Table

Page Directory
+

cr3

4KB Page frame

+

31 22 21 12 11 0

cr2

Page fault address

cr0

Cr0.PG = 1 : paging enabled

February 23 CMSC412 Set 3 32

Paging (cont’d)

 Page Directories and Page Tables entry field
 Available for system programmer’s use
 Global page
 Page size(0 indicates 4 Kbytes)
 Reserved(set to 0) / Dirty
 Accessed
 Cache disabled
 Write-through
 User/Supervisor
 Read/Write
 Present

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address Avail. G
P
S

0 A
P
C
D

P
W
T

U
/
S

R
/

W
P

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page Base Address Avail. G 0 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

February 23 CMSC412 Set 3 33

Protection

 Privilege Level Checking

 The segment-protection mechanism recognizes 4
privilege levels, numbers from 0 to 3. The greater
numbers mean lesser privileges.

 Privilege levels are checked when the segment
selector of a segment descriptor is loaded into a
segment register.

 When the processor detects a privilege level
violation, it generates a general-protection
exception(#GP).

February 23 CMSC412 Set 3 34

Protection (cont’d)

 To carry out privilege-level checks between code segments and data
segments, the processor recognizes the following three types of privilege
levels:
 Current Privilege Level (CPL)

 The privilege level of the currently executing task
 It is equal to the privilege level of the code segment from which instructions are

being fetched.

 Descriptor Privilege Level (DPL)
 The privilege level of the segment of gate.

 Requested Privilege Level (RPL)
 It is an override privilege level that is assigned to segment selectors.

* Privilege check for dataaccess
February 23 CMSC412 Set 3 35

February 23 CMSC412 Set 3 36

Gate
 The architecture also defines a set of special descriptors called gates (call

gates, interrupt gates, trap gates, and task gates). These provide
protected gateways to system procedures and handlers that may operate
at a different privilege level than application programs and most
procedures.

 For example, a CALL to a call gate can provide access to a procedure in a
code segment that is at the same or a numerically lower privilege level
(more privileged) than the current code segment. To access a procedure
through a call gate, the calling procedure supplies the selector for the call
gate. The processor then performs an access rights check on the call gate,
comparing the CPL with the privilege level of the call gate and the
destination code segment pointed to by the call gate.

 If access to the destination code segment is allowed, the processor gets
the segment selector for the destination code segment and an offset into
that code segment from the call gate. If the call requires a change in
privilege level, the processor also switches to the stack for the targeted
privilege level. The segment selector for the new stack is obtained from
the TSS for the currently running task. Gates also facilitate transitions
between 16-bit and 32-bit code segments, and vice versa.

February 23 CMSC412 Set 3 37

Interrupt and Exception handling

 External interrupts, software interrupts and exceptions are handled
through the interrupt descriptor table (IDT). The IDT stores a collection of
gate descriptors that provide access to interrupt and exception handlers.
The linear address for the base of the IDT is contained in the IDT register
(IDTR).

 Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors.
To access an interrupt or exception handler, the processor first receives an
interrupt vector (interrupt number) from internal hardware, an external
interrupt controller, or from software by means of an INT, INTO, INT 3, or
BOUND instruction.

 The interrupt vector provides an index into the IDT. If the selected gate
descriptor is an interrupt gate or a trap gate, the associated handler
procedure is accessed in a manner similar to calling a procedure through
a call gate. If the descriptor is a task gate, the handler is accessed
through a task switch.

February 23 CMSC412 Set 3 38

Relationship of the IDTR and IDT

February 23 CMSC412 Set 3 39

Gate Descriptor

Call Gate

• IDT : Task Gate, Interrupt, Trap Gate
• LDT : Call Gate

• While transferring control to the proper
segment, the processor clears theEFLAGS.IF
flag, thus disabling further maskableinterrupts.

•While transferring control to the proper
segment, the processor does not modifythe
EFLAGS.IF flag.

February 23 CMSC412 Set 3 40

Executing a handler

* Exception or Interrupt Procedurecall * Interrupt Task Switch

February 23 CMSC412 Set 3 41

Interrupt and Exception Vectors

 0 ~ 31 (fixed)
 Exceptions and nonmaskable interrupts

 6: Invalid Opcode

 13 : general protection exception

 14 : page fault

 32 ~ 47
 Maskable interrupts

 Interrupts caused by IRQs

 48 ~ 255
 S/W interrupts

 Linux uses only one of them,
 128 : to implement system calls

February 23 CMSC412 Set 3 42

Interrupt and Exceptions

 When an interrupt or exception is signaled, the processor halts
execution of the current program or task and switches to a
handler procedure that has been written specifically to handle the
interrupt or exception condition.

 The processor accesses the handler procedure through an entry in
the interrupt descriptor table (IDT).

 When the handler has completed handling the interrupt or
exception, program control is returned to the interrupted program
or task.

 If the code segment for the handler procedure has the same
privilege level as the currently executing program or task, the
handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for
the handler’s privilege level.

 A return from an interrupt or exception handler is initiated with
the IRET instruction. The IRET instruction is similar to the far RET
instruction, except that it also restores the contents of the EFLAGS
register for the interrupted procedure.

February 23 CMSC412 Set 3 43

Interrupt and Exceptions (cont’d)

 If no stack switch occurs, the processor does the following when calling
an interrupt or exception handler
 Pushes the current contents of the EFLAGS, CS, and EIP registers (in that

order) on the stack.
 Pushes an error code (if appropriate) on the stack.
 Loads the segment selector for the new code segment and the new

instruction pointer (from the interrupt gate or trap gate) into the CS and
EIP registers, respectively.

 If the call is through an interrupt gate, clears the IF flag in the EFLAGS
register.

 Begins execution of the handler procedure.

 When executing a return from an interrupt or exception handler from the
same privilege level as the interrupted procedure, the processor performs
these actions:
 Restores the CS and EIP registers to their values prior to the interrupt or

exception.
 Restores the EFLAGS register.
 Increments the stack pointer appropriately.
 Resumes execution of the interrupted procedure.

February 23 CMSC412 Set 3 44

Interrupt and Exceptions (cont’d)
 If a stack switch does occur, the processor does the following:

 Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP
registers.

 Loads the segment selector and stack pointer for the new stack (that is, the stack for
the privilege level being called) from the TSS into the SS and ESP registers and
switches to the new stack.

 Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted
procedure’s stack onto the new stack.

 Pushes an error code on the new stack (if appropriate).
 Loads the segment selector for the new code segment and the new instruction

pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

 If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
 Begins execution of the handler procedure at the new privilege level.

 When executing a return from an interrupt or exception handler from a different
privilege level than the interrupted procedure, the processor performs these
actions:
 Performs a privilege check.
 Restores the CS and EIP registers to their values prior to the interrupt or exception.
 Restores the EFLAGS register.
 Restores the SS and ESP registers to their values prior to the interrupt or exception,

resulting in a stack switch back to the stack of the interrupted procedure.
 Resumes execution of the interrupted procedure.February 23 CMSC412 Set 3 45

Interrupt and Exceptions (cont’d)

February 23 CMSC412 Set 3 46

February 23 CMSC412 Set 3 47

Task Structure
 A task is made up of two parts: a task execution space and a task-

state segment(TSS).
 A task is identified by the segment selector for its TSS. When a

task is loaded into the processor for execution, the segment
selector, base address, limit, and segment descriptor attributes for
TSS are loaded into the task register.

February 23 CMSC412 Set 3 48

Task State Segment

•SS0, SS1, SS2
- Stack Segment for ring 0, 1, 2

•ESP0, ESP1, ESP2
- Stack pointer for ring 0, 1, 2

February 23 CMSC412 Set 3 49

H/W Task Switching

 The processor transfers execution to another task
in one of following cases

 JMP or Call instruction to a procedure located in a
different task using far pointer

 to a TSS descriptor in the GDT.

 to a task-gate descriptor in the GDT or the current LDT.

 An interrupt or exception vector points to a task-
gate descriptor in the IDT.

 The current task executes an IRET when the NT flag
in the EFLAGS register is set.

*
February 23 CMSC412 Set 3 50

H/W Task Switching (cont’d)

 The processor performs the following operations when
switching to a new task
 Obtains the TSS segment selector for the new task.
 Check that the current (old) task is allowed to switch to

the new task. (CPL/DPL/RPL)
 Saves the state of the current (old) task in the current

task’s TSS.
 Loads the task register with the segment selector and

descriptor for the new task’s TSS.
 The TSS state is loaded into the processor. This includes

the LDTT, CR3, EFLAGS, EIP, the general purpose registers,
and the segment selectors.

 The descriptor associated with the segment selectors are
loaded and qualified.

*
February 23 CMSC412 Set 3 51

February 23 CMSC412 Set 3 52

I/O Port Addressing

 The processor permits applications to access I/O ports
in either of two ways:

 Through a separate I/O address space

 Handled though a set of I/O instructions and a special I/O
protection mechanism

 Writes to I/O ports are guaranteed to be completed before the
next instruction in the instruction stream is executed.

 Through memory-mapped I/O

 Accessing I/O ports through memory-mapped I/O is handled
with the processors general-purpose move and string
instructions, with protection provided through segmentation or
paging.

February 23 CMSC412 Set 3 53

I/O Address Space

 The processor’s I/O address space is separate and distinct from the
physical-memory address space.

 The I/O address space consists of 216 (64K) individually addressable 8-bit
I/O ports, numbered 0 through FFFFH.

 I/O port addresses 0F8H through 0FFH are reserved.

February 23 CMSC412 Set 3 54

I/O port protection

 When accessing I/O ports through the I/O address space,
two protection devices control access:

 I/O instructions can be executed only if the current privilege
level (CPL) of the program or task currently executing is less
than or equal to the IOPL.

 Any attempt by a less privileged program or task to use an I/O
sensitive instruction results in a general-protection exception
(#GP) being signaled.

 The I/O permission bit map in the TSS can be used to modify
the effect of the IOPL on I/O sensitive instructions, allowing
access to some I/O ports by less privileged programs or tasks.

 When accessing memory-mapped I/O ports,
 the normal segmentation and paging protection also affect

access to I/O ports.

February 23 CMSC412 Set 3 55

I/O port protection (cont’d)

 The I/O permission bit map is a device for permitting limited access to
I/O ports by less privileged programs or tasks.
 If in protected mode and the CPL is less than or equal to the current IOPL,

the processor allows all I/O operations to proceed.
 If the CPL is greater than the IOPL, the processor checks the I/O

permission bit map to determine if access to a particular I/O port is
allowed.

 The I/O permission bit map is located in the TSS for the currently running
task or program.
 Each bit in the map corresponds to an I/O port byte address.

February 23 CMSC412 Set 3 56

February 23 CMSC412 Set 3 57

Stack

 The stack is a contiguous array of memory locations. It is
contained in a segment and identified by the segment selector in
the SS register.

 Items are placed on the stack using the PUSH instruction and
removed from the stack using the POP instruction.
 When an item is pushed onto the stack, the processor decrements

the ESP register, then writes the item at the new top of stack.
When an item is popped off the stack, the processor reads the
item from the top of stack, then increments the ESP register.

 The processor references the SS register automatically for all stack
operations. For example, when the ESP register is used as a
memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE
instructions all perform operations on the current stack.

February 23 CMSC412 Set 3 58

Stack (cont’d)

Return Instruction
Pointer

Stack Frame

Stack-Frame Base Pointer

February 23 CMSC412 Set 3 59

Procedure Call (CALL/RET)

 When executing a call, the processor does the following
 Pushes the current value of the EIP register on the stack.

 Loads the offset of the called procedure in the EIP register.

 Begins execution of the called procedure.

 When executing a near return, the processor performs these
actions:
 Pops the top-of-stack value (the return instruction pointer) into

the EIP register.

 If the RET instruction has an optional n argument, increments
the stack pointer by the number of bytes specified with the n
operand to release parameters from the stack.

 Resumes execution of the calling procedure.

February 23 CMSC412 Set 3 60

Procedure Call (CALL/RET) (cont’d)

CALL addr RET n

February 23 CMSC412 Set 3 61

	Slide 1: CSMC 412
	Slide 2
	Slide 3: X 86 vs x64
	Slide 4
	Slide 5: Basic Execution Environment.
	Slide 6: Operation Mode
	Slide 7: Memory Addresses
	Slide 8: Memory Models
	Slide 10: Privilege Level
	Slide 11
	Slide 12
	Slide 13
	Slide 14: System Level Registers and Data Structures
	Slide 15: Basic Program Execution Registers
	Slide 16: Basic Program Execution Registers (cont’d)
	Slide 17: Basic Program Execution Registers (cont’d)
	Slide 18: Basic Program Execution Registers (cont’d)
	Slide 19: Basic Program Execution Registers (cont’d)
	Slide 20: Basic Program Execution Registers (cont’d)
	Slide 21: Memory Management Registers
	Slide 22: Control Registers
	Slide 23
	Slide 24: General Purpose Instructions
	Slide 25: System Instructions
	Slide 26
	Slide 27: Segmentation & Paging
	Slide 28: Segmentation & Paging (cont’d)
	Slide 29: Segmentation
	Slide 30: Segmentation (cont’d)
	Slide 31: Segmentation (cont’d)
	Slide 32: Paging
	Slide 33: Paging (cont’d)
	Slide 34: Protection
	Slide 35: Protection (cont’d)
	Slide 36
	Slide 37: Gate
	Slide 38: Interrupt and Exception handling
	Slide 39: Relationship of the IDTR and IDT
	Slide 40: Gate Descriptor
	Slide 41: Executing a handler
	Slide 42: Interrupt and Exception Vectors
	Slide 43: Interrupt and Exceptions
	Slide 44: Interrupt and Exceptions (cont’d)
	Slide 45: Interrupt and Exceptions (cont’d)
	Slide 46: Interrupt and Exceptions (cont’d)
	Slide 47
	Slide 48: Task Structure
	Slide 49: Task State Segment
	Slide 50: H/W Task Switching
	Slide 51: H/W Task Switching (cont’d)
	Slide 52
	Slide 53: I/O Port Addressing
	Slide 54: I/O Address Space
	Slide 55: I/O port protection
	Slide 56: I/O port protection (cont’d)
	Slide 57
	Slide 58: Stack
	Slide 59
	Slide 60: Procedure Call (CALL/RET)
	Slide 61: Procedure Call (CALL/RET) (cont’d)

