PCA + AutoEncoders

CMSC 422
SOHEIL FEIZI

sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT
and GUY GOLAN

mailto:marine@cs.umd.edu

Today’s topics

* PCA

* Nonlinear dimensionality reduction

Unsupervised Learning

Unsupervised Learning
Data: X (no labels!)

Goal: Learn the hidden
structure of the data

Dimensionality Reduction

* Goal: extract hidden lower-dimensional
structure from high dimensional datasets

e Why?
— To visualize data more easily
— To remove noise in data

— To lower resource requirements for
storing/processing data

— To improve classification/clustering

Principal Component Analysis

* Goal: Find a projection of the data onto
directions that maximize variance of the

original data set

— Intuition: those are directions in which most
information is encoded

* Definition: Principal Components are
orthogonal directions that capture most of the
variance in the data

PCA: finding principal components

+ 15tPC

— Projection of data points along 15t PC

discriminates data most along any one
direction

+ 2nd pC

— next orthogonal direction of greatest
variability

e And so on...

PCA: notation

* Data points

— Represented by matrix X of size NxD
— Let’s assume data is centered

* Principal components are d vectors: vy, v,, ... Vg4
V. Vj = 0,0 #J and Vi-Vy = 1

* The sample variance data projected on vector v is

n (g v)? = (Xv)T (Xv)

PCA formally

* Finding vector that maximizes sample variance
of projected data:

argmax, v' X! Xv such that viv = 1

* A constrained optimization problem
" Lagrangian folds constraint into objective:
argmax, v X" Xv — A(v'v — 1)
= Solutions are vectors v such that X Xv = v

= i.e. eigenvectors of XT X(sample covariance matrix)

PCA formally

* The eigenvalue A denotes the amount of variability
captured along dimension v

— Sample variance of projection v' X Xv = A

* |f we rank eigenvalues from large to small

— The 15t PC is the eigenvector of X! X associated with
largest eigenvalue

— The 2nd PC is the eigenvector of X X associated with
2"d |argest eigenvalue

Alternative interpretation of PCA

* PCA finds vectors v such that projection on to
these vectors minimizes reconstruction error

1 & T 2
~ > lxi— (v x| -
1=1

Resulting PCA algorithm

Algorithm 36 PCA(D, K)

i § <— MEAN(X) // compute data mean for centering

» D« (X = le) ! (X = le) // compute covariance, 1 is a vector of ones

3 {Ar, up} < top K eigenvalues/eigenvectors of D
¢ return (X—ul)U // project data using U

How to choose the
hyperparameter K?

e j.e.the number of dimensions

(%)

Ol mE e =
C4 PC5H PC6 PCY PC8 PC9 PC10

* We can ignore the components of smaller
significance

An example: Eigenfaces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)

PCA pros and cons

* Pros
— Eigenvector method
— No tuning of the parameters
— No local optima

e Cons

— Only based on covariance (2" order statistics)
— Limited to linear projections

What you should know

* Principal Components Analysis

— Goal: Find a projection of the data onto directions
that maximize variance of the original data set

— PCA optimization objectives and resulting algorithm

— Why this is useful!

PCA — Principal Component analysis

- Statistical approach X,
for data
compression and
visualization

- Invented by Karl
Pearson in 1901

- Weakness: linear
components only.

Autoencoder

= Unlike the PCA now we

can use activation
functions to achieve

non-linearity.

" |t has been shown that
an AE without activation
functions achieves the
PCA capacity.

Uses

- The autoencoder idea was a part of NN
history for decades (LeCun et al, 1987).

- Traditionally an autoencoder is used for

dimensionality reduction and feature
learning.

- Recently, the connection between
autoencoders and latent space modeling
has brought autoencoders to the front of
generative modeling, as we will see in the
next lecture.

Simple ldea

- Given data x (no labels) we would like to learn
the functions f (encoder) and g (decoder)
where: X

f(x)=s(wx+b)=1z
and

gz)=sw'z+b") =%

s.th(x) = g(f(x)) =X

where h is an approximation of the identity
function.

: (z is some latent

: representation or code
- and s is a non-linearity
: such as the sigmoid)

=D

Simple Idea

" Learning the identity function
seems trivial, but with added
constraints on the network (such
as limiting the number of hidden
neurons or regularization) we
can learn information about the
._structure of the data.

Trying to capture the
distribution of the
data (data specific!)

€

Training the AE

Using Gradient Descent we can simply train the
model as any other FC NN with:

- Traditionally with squared error loss function

L(x,%) = |lx — %I

- Why?

AE Architecture

* Hidden layer is
Undercomplete if smaller

than the input layer X [OOOOOO]

dCompresses the input “ ,
w

L Compresses well only
for the training dist. £(x) [OO0]
* Hidden nodes will be NW
1 Good features for the
training distribution. x [OOOOOO]

Bad for other types on
iInput

Deep Autoencoder Example

* https://cs.stanford.edu/people/karpathy/co
nvnetjs/demo/autoencoder.html! - By Andre;
Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Simple latent space interpolation

Simple latent space interpolation

Z1

Z; = aﬁ+ (1 —a);E
g —®

imple latent space interpolation

