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Today’s topics

• PCA

• Nonlinear dimensionality reduction 



Unsupervised Learning 

Unsupervised Learning
Data: X (no labels!)
Goal: Learn the hidden 
structure of the data



Dimensionality Reduction

• Goal: extract hidden lower-dimensional 
structure from high dimensional datasets

• Why?
– To visualize data more easily
– To remove noise in data
– To lower resource requirements for 

storing/processing data
– To improve classification/clustering



Principal Component Analysis

• Goal: Find a projection of the data onto 
directions that maximize variance of the 
original data set
– Intuition: those are directions in which most 

information is encoded

• Definition: Principal Components are 
orthogonal directions that capture most of the 
variance in the data



PCA: finding principal components

• 1st PC
– Projection of data points along 1st PC 

discriminates data most along any one 
direction

• 2nd PC
– next orthogonal direction of greatest 

variability
• And so on…



PCA: notation

• Data points
– Represented by matrix X of size NxD
– Let’s assume data is centered

• Principal components are d vectors:  !", !$, … !&
!'. !) = 0, , ≠ . and !'. !' = 1

• The sample variance data projected on vector v is 
∑'1"2 (4'5!)$ = 7! 5 7!



PCA formally

• Finding vector that maximizes sample variance 
of projected data:

!"#$!%& '()( )' such that '(' = 1

• A constrained optimization problem
§ Lagrangian folds constraint into objective: 
!"#$!%& '()( )' − -('(' − 1)

§ Solutions are vectors v such that )( )' = -'
§ i.e. eigenvectors of )( )(sample covariance matrix)



PCA formally

• The eigenvalue ! denotes the amount of variability 
captured along dimension "
– Sample variance of projection "#$# $" = !

• If we rank eigenvalues from large to small
– The 1st PC is the eigenvector of $# $ associated with 

largest eigenvalue
– The 2nd PC is the eigenvector of $# $ associated with 

2nd largest eigenvalue
– …



Alternative interpretation of PCA

• PCA finds vectors v such that projection on to 
these vectors minimizes reconstruction error



Resulting PCA algorithm



How to choose the 
hyperparameter K?

• i.e. the number of dimensions

• We can ignore the components of smaller 
significance



An example: Eigenfaces



PCA pros and cons

• Pros
– Eigenvector method
– No tuning of the parameters
– No local optima

• Cons
– Only based on covariance (2nd order statistics)
– Limited to linear projections



What you should know

• Principal Components Analysis

– Goal: Find a projection of the data onto directions 
that maximize variance of the original data set

– PCA optimization objectives and resulting algorithm

– Why this is useful!



PCA – Principal Component analysis 

- Statistical approach 
for data 
compression and 
visualization

- Invented by Karl 
Pearson in 1901

- Weakness: linear 
components only.



Autoencoder

§ Unlike the PCA now we 
can use activation 
functions to achieve 
non-linearity.

§ It has been shown that 
an AE without activation 
functions achieves the 
PCA capacity.

!



Uses
- The autoencoder idea was a part of NN 

history for decades (LeCun et al, 1987).

- Traditionally an autoencoder is used for 
dimensionality reduction and feature 
learning.

- Recently, the connection between 
autoencoders and latent space modeling 
has brought autoencoders to the front of 
generative modeling, as we will see in the 
next lecture.



Simple Idea

- Given data ! (no labels) we would like to learn 
the functions " (encoder) and # (decoder) 
where:

" ! = % &! + ( = )

and 

# ) = % &*z + (* = ,!

s.t ℎ ! = # " ! = ,!

where ℎ is an approximation of the identity   
function.

() is some latent
representation or code
and % is a non-linearity 
such as the sigmoid)

,!" ! # )!

(,! is !’s 
reconstruction)

)



Simple Idea
Learning the identity function 
seems trivial, but with added 
constraints on the network (such 
as limiting the number of hidden 
neurons or regularization) we 
can learn information about the 
structure of the data.

Trying to capture the 
distribution of the 
data (data specific!)



Training the AE
Using Gradient Descent we can simply train the 
model as any other FC NN with:

- Traditionally with squared error loss function

! ", $" = " − $" '

- Why?



AE Architecture 

!

"!

#

#′
% !

• Hidden layer is 
Undercomplete if smaller 
than the input layer
qCompresses the input
qCompresses well only 

for the training dist.

• Hidden nodes will be
qGood features for the 

training distribution.
qBad for other types on 

input



Deep Autoencoder Example

• https://cs.stanford.edu/people/karpathy/co
nvnetjs/demo/autoencoder.html - By Andrej 
Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html


Encoder

Encoder

!"

!#

Simple latent space interpolation



Simple latent space interpolation

!" !#

!$ = & + 1 − &
!$

Decoder



Simple latent space interpolation


