
Optimization Problems

Optimization Problems

We have been looking at problems

such as selection and sorting. These

problems don’t really involve the

notion of making a choice, or more

specifically, the best choice.

We haven’t been looking at problems

where we want to choose the optimal

answer. There isn’t really an

“optimal” sorted list. There are good

and bad ways to achieve the right

ordering, but there is not a concept of

the “best sorted order”.

Optimization Problems: Examples

Typically problems with choices:

– Shortest Path (“short” could be cheap, etc.)

• Internet traffic

• driving directions

• air travel

– Minimum Spanning Tree

• given a graph, build the cheapest tree that
touches all nodes

– Bin Packing

• given a group of items of different sizes, and a
set of containers, how can you place items in
containers to minimize the number of containers
used?

– Scheduling

• given the Colony Ballroom at the Stamp Union
and a list of events, with the goal of getting as
many events as possible in the room, how do
you select the events to OK?

• given list of courses you’d like to take, what’s
the most that you can fit into a schedule?

Activity Scheduling

We have a single resource and have n

requests to use that resource.

– the resource can not be shared

– the requests each have a start and finish time

requesti[si,fi)

Your function must take the requests and

return a list of approved requests such that

the most possible number of requests are

granted.

Consider the following questions…

– How many potential answers are there?

– How long does it take to determine whether a

candidate solution would actually work?

– Given a list of valid candidates, how long

would it take to choose the best solution?

Finding Solutions Faster

Can we do better than O(2n)?

Let’s think about creating sub-problems

that (if solved) could help us solve the

larger problem.

Given S as the set of requests, define Sij

as {rk∈S|fi≤sk<fk≤sj}

– We can call this the set of all requests

that could fit between requesti and

requestj.

We can now do the following:

– sort our list of requests by finish time

(when there is a tie, sort by start time)

– Add fictitious requests request0 and

requestn+1 as boundary markers.

Find the largest

non-conflicting subset

of S0,n+1

• If we find the largest non-conflicting

subset of S0,n+1, then we have our

solution.

• If i≥j then Sij is empty.

• If Sij is empty for any reason, then

there’s nothing to compute.

• If it is non-empty, then there must

exist some request requestk where

i<k<j that will appear in the optimal

solution.

• Using requestk as part of the solution

creates two sub-problems to optimize:

Sik and Skj.

How can we implement this?
We could write this as a recursive

definition for matrix c (for count):

– define c[i,j] as the maximum number

of requests that are Compatible with

each other from Sij.

– If Sij is non-empty, then there is a

request requestk that is used, and c[i,j]

can be expressed as c[i,k]+1+c[k,j]

We now have a definition, but we

don’t know who requestk is yet!

We could just try all of them…

Dynamic Programming

Notice that once we compute a

particular c[a,b] value, we could just

store that solution and look it up later

if it’s ever needed again…

– This is very much like one of our

Fibonacci improvements from earlier

in the semester.

In dynamic programming, we often

work from the bottom of a recursion

tree, back up towards the top.

– Start by solving for sub-problems of

size 1, then of size 2, then of size 3,

etc…

Pseudo Code

Initialize the matrix c to all zeros.

Assume we have an array r of request

records.

for d=1 to n+1

for i=0 to n-d+1

j=i+d

if (r[i].f<=r[j].s)

for k=i+1 to j-1

if (

((r[i].f<=r[k].s)

&&

(r[k].f<=r[j].s)

)

&&

(c[i,k]+1+c[k,j]>c[i,j])

)

then c[i,j]= c[i,k]+1+c[k,j];

What is the runtime of this algorithm?

A Faster Solution

Greedy algorithms look for the

“locally optimal” choice and take it.

For this problem, a greedy approach

would be:

– Sort the list of requests.

– Take the first request in the sorted list

and assign it to the room.

– Remove everyone who conflicts with

that request.

– Repeat on remaining requests until

– Announce the solution.

The Greedy Solution is Optimal!

By taking the first request, we only

eliminate:

– Other requests that end at the same

time as this one.

• This is fine since we could only have

chosen one of all of these overlapping

events anyway.

– Other requests that overlapped this one

at some time period.

• Again, this is fine for the same reason.

In the next homework, you will need

to determine the runtime of this

solution and compare it to the two

previous solutions’ runtimes.

