
Heaps and some uses…

Another Tree: The Heap

When discussing heaps, we can

discuss either MinHeaps or

MaxHeaps.

All heaps are complete binary trees.

In a MaxHeap, for any node

everything in its subtrees is smaller

than what is in the node itself.

Questions:

– What is the height of a heap?

– How long does it take to find a value?

– How long to insert/delete a value?

Heap::Insert(val)

Due to the structure of the heap, you

always know where the next new

node will be placed.

The challenge is to maintain [in

O(logn) time] the heap’s overall

property of subtrees having contents

less than (or for a MinHeap greater

than) the local root node.

Let’s look at how a MaxHeap would

be built using the values:

1, 2, 3, 4, 5, 6

Heap::Delete()

Due to the structure of the heap, you

also always know where the next

new node is going to be dropped.

Once again, the challenge is to

maintain [in O(logn) time] the

heap’s overall data property.

Let’s look at what it would be like to

delete the root of a MaxHeap:

Array Storage Example

A

E

C F

Z X

J

A | C | F | Z | -1 | E | X | -1 | -1 | -1 | -1 | -1 | -1 | J | -1 | ….

Note: When used when complete trees such as

heaps, there are no gaps within the tree - only empty

spaces on the extreme right.

Heap as Priority Queue

One use of a heap is that of Priority

Queue. It has good run-times for

insertion and deletion, and provides

instant access to the next item in the

queue.

HeapSort

Since the heap provides an easy way

to extract values in their relative

order, it is trivial to create an

O(nlogn) sorting algorithm using a

heap.

– Build the heap.

– Harvest the heap.

Some questions to consider:

– Can we sort an array of values without

using a linear amount of extra

memory?

– Is the worst-case runtime actually

better than nlogn?

Heapify

Let’s assume a MaxHeap. If you have

a complete tree where the root is the

only thing that is violating the heap

property, you can just “bubble” that

value down to a valid position.

– If the value in the root is smaller than

either child, swap it with the larger of

the children and then repeat this until it

is no longer smaller than either of its

children.

What’s the runtime of this?

Could this be used to build a heap an

array in-place?

Run-time of Build-Heap()

The run-time of each of the mutliple

calls to heapify is based on the

current height of the heap.

Assuming that the lowest level of the

heap is full the heap could contain a

total of n=2h+1-1 values.

How much work would be done if we

took an unordered array of this size

and turned it into a heap this way?

Harvesting the heap…

As a thought question, what would the

run-time be to harvest the heap in

order?

