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Tree-based Data 
Structures and Algorithms

BinaryTree::FindSmall()

How would you search for the 

smallest element in a generic

binary tree?  
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BinarySearchTree::FindSmall()

How would you search for the 

smallest element in a binary 

search tree?

BST::FindNextLargest()

How would you find the next 

largest element in a BST based 

on the element at which you were 

currently positioned?
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BST::Add(val) and Del(val)

How would you add something to a 

BST?

How would you delete something 

from a BST?

Question

Will the following algorithm work to 

determine whether a binary tree is a 

binary search tree if you pass in its 

root?

boolean testBST(Node root) {

boolean answer = true;

if (root.left != null) {

answer = answer && 

root.val >= root.left.val &&

testBST(root.left);

}

if (root.right != null) {

answer = answer && 

root.val <= root.right.val &&

testBST(root.right);

}

return answer;

}
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How to write testBST?

This is left in part as a thought exercise for 

those who might find this question 

interesting.

It might be tempting to say that for each 

node you should check to see if the largest 

value in left subtree is smaller than the 

value in the node and then check to see if 

the minimum value in right subtree greater 

than it, but does that have a good runtime 

cost.

If you work out (or find) a solution that is 

correct, you should then analyze the runtime 

in terms of data comparisons.  It should be 

n time really…  It should also not use too 

much extra space…  We’ve actually talked 

about something similar that will work…

Balanced Trees

In terms of height, the best binary tree 

is a complete binary tree.

Problem: It will be costly to maintain 

this property as new data is added to 

a complete binary search tree.

Typical Solution: Allow for a certain 

(very small) degree of imbalance.
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AVL Trees

The AVL Tree (named for Adelson-

Velskii and Landis) is an example of 

a “height-balanced” binary search 

tree.

– Any two subtrees of a node have 

heights that differ by at most one.

Is this constraint enough to guarantee 

that the height of the tree will be 

O(logn)?

AVL Tree Run-times

Search

– This is O(logn) since we have proven 
that the height of the tree is O(logn).

Insert

– This is also O(logn) but requires a bit 
of thought.

– Always insert at the leaf level and then 
rebalance.  There are only a few cases 
that need to be handled.

Delete

– This can also be done in O(logn) time 
and also requires a bit of thought.

– Always delete at the leaf level.  If the 
value to be deleted isn’t at the leaf, 
find a value at the leaf level that can 
take the place of the one that you want 
to delete.
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Other BSTs…

Red-Black Trees (balanced)

– The height is at most 2log(n+1).

– Insertion and deletion is O(logn).

Splay Trees (not balanced)

– The height can get as bad as O(n) in 

the worst case (but searching the tree 

actually helps rebalance the tree).

– Insertion, Deletion, and Searching 

have amortized runtimes of O(logn).

– In this data structure, the search target 

is moved to the root - this means that if 

you search for the same subset of 

things repeatedly, you get even better 

performance.


