
What if n=1???



n = 1

What problems are interesting when n
is just 1?  

Sorting?  No

Median finding?  No

Addition?

“How long does it take to add one 
pair of numbers?”

Multiplication?

“How long does it take to multiply 
one pair of numbers?”

Primality?

“How long does it take to determine 
with a given number is prime?”



It’s all about the digits…

For problems such as these, the 

runtime is proportional to the 

number of digits in the numbers.

We rephrase our questions as:

“How long does it take to add one 

pair of d-digit numbers?”

“How long does it take to multiply 

one pair of d-digit numbers?”

“How long does it take to determine 

with a given d-digit number is 

prime?”



Adding d-digit numbers

We will count any digit-level pairwise 
math operation as our unit of work 
since comparisons don’t really make 
sense here.

Grade-school math says we can:

- work from right to left adding digits 
one column at a time (if there is a 
carry we add it in too)

- if there are d-digits, there are d 
columns, so certainly less than 3d, and 
looking at it carefully it can be done in 
2d, and with custom operators maybe 
even 1d – either way, the runtime is 
O(d)

Can we do this with fewer than d
operations?  No, so it is Θ(d).



Multiplying d-digit numbers

Again, we will count any digit-level 
pairwise math operation as work 
since comparisons don’t really make 
sense here.

Grade-school math says we can:

- for each position in the second 
number, work from right to left 
multiplying it against the digits in the 
first number and then add all of the 
resulting numbers

- if there are d-digits, there are d
columns, so the runtime of this is at 
least d2

Note: Division has similar issues.

Can we do this with fewer than O(d2) 
operations?



Primality Testing runtime?

We could start looping 2 to n-1 and 

testing whether that value divides our 

number.

We could loop from 2 to sqrt(n) by 

basic math.

We could iterate through a list of all 

known primes from 2 to sqrt(n) by 

some slightly more advanced math.

Since this requires that list of all known 

primes up to that point, randomly picking 

odd numbers is used in some places, 

using probable primes by others.

However, these depend on dividing!



Fermat primality test

We won’t go into this approach here (I 

won’t call it an algorithm) but relating 

things back to an earlier topic, there is 

something called the “Fermat 

primality test” which is a faster test 

but is sometimes wrong.

Numbers tested with this approach 

where a factor is not found are called 

“probably prime” numbers.



“Solid Math” can help too

Consider the following for algorithm #2:

- The quotient-remainder theorem tells 

us all integers can be written as 6k+d 

where k is an integer and d is 0, 1, 2, 

3, 4, or 5.

- We could easily prove that:

2 divides (6k+0), (6k+2), (6k+4)

3 divides (6k+3)

So, with a little bit of CMSC250 

cleverness, we know that if our target 

isn’t divisible by 2 or 3, we only need to 

test it against numbers that can be 

written as (6k+1) or (6k+5) for a 

savings of a constant factor of 3.



Faster Multiplication 

(and Division)

There are ways to do division based 

on how we do multiplication, but we 

will focus on multiplication for 

conceptual reasons…



Divide&Conquer Multiplying

Without loss of generality, let’s talk in 

terms of binary numbers.

Let’s say we want to multiply a and b.  

We can write a as a1a2 where a1 is 

the first half of n bits and a2 is the 

second half of the bits and do the 

same for b.

It turns out that we could try a clever 

divide and conquer approach:

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

The question is, does this actually 

HELP us at all?  



Divide&Conquer Multiplying

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

This equation has four multiplications on 

(n/2)-bit numbers but also has some other 

multiplication on larger-bit numbers.  

However, we can be clever in two ways:

– avoid having to multiply a1b1 by 2n but 

rather add the a1b12
n and a2b2  terms by 

concatenating the a1b1 and a2b2 terms

– avoid having to multiply by 20.5n if we 

instead shift the sum of the a1b2+a2b1 

value over the appropriate number of 

bits before adding to the a1b1 a2b2 

concatenation result

We know addition is linear in the number of 

bits, so we get M(n) = 4M(n/2)+cn



M(n) = 4M(n/2)+cn

What does M(n) = 4M(n/2)+cn work 

out to for runtime?

If you do a quick recursion-tree 

analysis (work it out for practice) 

you will find that the runtime is n2.  

So, it is perhaps clever but it is no 

improvement so far…



Getting really clever…

We want to multiply a and b.  We wrote a

as a1a2 and b as b1b2.

We could say:

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

but we could also get even more clever and 

say:

p1=a1b1

p2=a2b2

p3=(a1+a2)(b1+b2)

and make the product be:

ab = p12
n+(p3-p1-p2)2

0.5n +p2

We have now “replaced” one multiplication 
with some more addition and some 
subtraction (which can also be done in 
linear time like addition).



M(n) = 3M(n/2)+sn

What does M(n) = 3M(n/2)+sn work 

out to for runtime?

If you do a quick recursion-tree 

analysis (work it out for practice) 

you will find that the runtime is 

nlog2(3).  So, some more cleverness 

which this time leads to a better 

asymptotic runtime class!



What about division?

There are ways to do it in the same 

runtime as multiplication…



How many bits?

If you wanted your program to be able 

to store individual unsigned integers 

between 1 and N, how many bits

would your variable need to have?

Answer: log2(N)



Time and Space

You are monitoring a feed of unique 

numbers and all numbers between 1

and N will come through the feed 

EXCEPT ONE OF THEM. You 

basically get to see it once and then it's 

gone into the ether.  

• N will be very large and you are not 

allowed to use a data structure or 

file to hold all those values.  

• How can you determine the missing 

number after having seen N-1

numbers pass through the feed.

• How many bits of extra storage do 

you need?

What if TWO were missing?



Matrix Addition

Adding two 2x2 matrices:

gives:

Where cij=aij+bij.

So, in general, if the matrix is nxn, an 

n2 algorithm.
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Matrix Multiplication

Multiplying two 2x2 matrices:

gives:

Where

So, in general, if the matrix is nxn, an 

n3 algorithm.
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Run-Time Improvement?

Using the brute force algorithms that 

we saw earlier, we get runtimes of:

MM(n)=Θ(n3)

MA(n)=Θ(n2)

Do you think there’s any way to 

improve either?  If we thought about 

the lower bounds, what do they feel 

like they’d be?



Start with a small step…

If we wanted to multiply two 2x2 

matrices it could easily be done 

using 8 multiplication operations.

Is there a way to do it using only 7

multiplication operations, and a 

constant number of additional

addition operations?

If there were, would this help bring 

down the asymptotic runtime of full 

matrix multiplication?



Divide and Conquer

It turns out that matrix multiplication 

can be solved recursively by first 

imagining any n by n matrix as four 

smaller matrices, each being n/2 by 

n/2 and then recursively multiplying 

those.

So, if 2x2 matrix multiplication could 

be done using 7 multiplication and 

some number of additions, the 

overall problem would be…

MM(2) = constant amount of work

MM(n) = 7 MM(n/2) + Θ(n2)

Is this better than O(n3)?  Work out 

the recurrence tree…



Strassen’s algorithm

Since MATH240 isn’t a prerequisite 

for this class we won’t dive into the 

very clever Strassen algorithm for 

doing the 2x2 problem using only 7 

multiplication operations, but it’s easy 

to find online if you are curious…


