
What if n=1???

n = 1

What problems are interesting when n
is just 1?

Sorting? No

Median finding? No

Addition?

“How long does it take to add one
pair of numbers?”

Multiplication?

“How long does it take to multiply
one pair of numbers?”

Primality?

“How long does it take to determine
with a given number is prime?”

It’s all about the digits…

For problems such as these, the

runtime is proportional to the

number of digits in the numbers.

We rephrase our questions as:

“How long does it take to add one

pair of d-digit numbers?”

“How long does it take to multiply

one pair of d-digit numbers?”

“How long does it take to determine

with a given d-digit number is

prime?”

Adding d-digit numbers

We will count any digit-level pairwise
math operation as our unit of work
since comparisons don’t really make
sense here.

Grade-school math says we can:

- work from right to left adding digits
one column at a time (if there is a
carry we add it in too)

- if there are d-digits, there are d
columns, so certainly less than 3d, and
looking at it carefully it can be done in
2d, and with custom operators maybe
even 1d – either way, the runtime is
O(d)

Can we do this with fewer than d
operations? No, so it is Θ(d).

Multiplying d-digit numbers

Again, we will count any digit-level
pairwise math operation as work
since comparisons don’t really make
sense here.

Grade-school math says we can:

- for each position in the second
number, work from right to left
multiplying it against the digits in the
first number and then add all of the
resulting numbers

- if there are d-digits, there are d
columns, so the runtime of this is at
least d2

Note: Division has similar issues.

Can we do this with fewer than O(d2)
operations?

Primality Testing runtime?

We could start looping 2 to n-1 and

testing whether that value divides our

number.

We could loop from 2 to sqrt(n) by

basic math.

We could iterate through a list of all

known primes from 2 to sqrt(n) by

some slightly more advanced math.

Since this requires that list of all known

primes up to that point, randomly picking

odd numbers is used in some places,

using probable primes by others.

However, these depend on dividing!

Fermat primality test

We won’t go into this approach here (I

won’t call it an algorithm) but relating

things back to an earlier topic, there is

something called the “Fermat

primality test” which is a faster test

but is sometimes wrong.

Numbers tested with this approach

where a factor is not found are called

“probably prime” numbers.

“Solid Math” can help too

Consider the following for algorithm #2:

- The quotient-remainder theorem tells

us all integers can be written as 6k+d

where k is an integer and d is 0, 1, 2,

3, 4, or 5.

- We could easily prove that:

2 divides (6k+0), (6k+2), (6k+4)

3 divides (6k+3)

So, with a little bit of CMSC250

cleverness, we know that if our target

isn’t divisible by 2 or 3, we only need to

test it against numbers that can be

written as (6k+1) or (6k+5) for a

savings of a constant factor of 3.

Faster Multiplication

(and Division)

There are ways to do division based

on how we do multiplication, but we

will focus on multiplication for

conceptual reasons…

Divide&Conquer Multiplying

Without loss of generality, let’s talk in

terms of binary numbers.

Let’s say we want to multiply a and b.

We can write a as a1a2 where a1 is

the first half of n bits and a2 is the

second half of the bits and do the

same for b.

It turns out that we could try a clever

divide and conquer approach:

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

The question is, does this actually

HELP us at all?

Divide&Conquer Multiplying

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

This equation has four multiplications on

(n/2)-bit numbers but also has some other

multiplication on larger-bit numbers.

However, we can be clever in two ways:

– avoid having to multiply a1b1 by 2n but

rather add the a1b12
n and a2b2 terms by

concatenating the a1b1 and a2b2 terms

– avoid having to multiply by 20.5n if we

instead shift the sum of the a1b2+a2b1

value over the appropriate number of

bits before adding to the a1b1 a2b2

concatenation result

We know addition is linear in the number of

bits, so we get M(n) = 4M(n/2)+cn

M(n) = 4M(n/2)+cn

What does M(n) = 4M(n/2)+cn work

out to for runtime?

If you do a quick recursion-tree

analysis (work it out for practice)

you will find that the runtime is n2.

So, it is perhaps clever but it is no

improvement so far…

Getting really clever…

We want to multiply a and b. We wrote a

as a1a2 and b as b1b2.

We could say:

ab = a1b12
n+(a1b2+a2b1)2

0.5n +a2b2

but we could also get even more clever and

say:

p1=a1b1

p2=a2b2

p3=(a1+a2)(b1+b2)

and make the product be:

ab = p12
n+(p3-p1-p2)2

0.5n +p2

We have now “replaced” one multiplication
with some more addition and some
subtraction (which can also be done in
linear time like addition).

M(n) = 3M(n/2)+sn

What does M(n) = 3M(n/2)+sn work

out to for runtime?

If you do a quick recursion-tree

analysis (work it out for practice)

you will find that the runtime is

nlog2(3). So, some more cleverness

which this time leads to a better

asymptotic runtime class!

What about division?

There are ways to do it in the same

runtime as multiplication…

How many bits?

If you wanted your program to be able

to store individual unsigned integers

between 1 and N, how many bits

would your variable need to have?

Answer: log2(N)

Time and Space

You are monitoring a feed of unique

numbers and all numbers between 1

and N will come through the feed

EXCEPT ONE OF THEM. You

basically get to see it once and then it's

gone into the ether.

• N will be very large and you are not

allowed to use a data structure or

file to hold all those values.

• How can you determine the missing

number after having seen N-1

numbers pass through the feed.

• How many bits of extra storage do

you need?

What if TWO were missing?

Matrix Addition

Adding two 2x2 matrices:

gives:

Where cij=aij+bij.

So, in general, if the matrix is nxn, an

n2 algorithm.









+








2221

1211

2221

1211

bb

bb

aa

aa










2221

1211

cc

cc

Matrix Multiplication

Multiplying two 2x2 matrices:

gives:

Where

So, in general, if the matrix is nxn, an

n3 algorithm.









•








2221

1211

2221

1211

bb

bb

aa

aa










2221

1211

cc

cc

∑
=

⋅=

2

1

)(
k

kjikij bac

Run-Time Improvement?

Using the brute force algorithms that

we saw earlier, we get runtimes of:

MM(n)=Θ(n3)

MA(n)=Θ(n2)

Do you think there’s any way to

improve either? If we thought about

the lower bounds, what do they feel

like they’d be?

Start with a small step…

If we wanted to multiply two 2x2

matrices it could easily be done

using 8 multiplication operations.

Is there a way to do it using only 7

multiplication operations, and a

constant number of additional

addition operations?

If there were, would this help bring

down the asymptotic runtime of full

matrix multiplication?

Divide and Conquer

It turns out that matrix multiplication

can be solved recursively by first

imagining any n by n matrix as four

smaller matrices, each being n/2 by

n/2 and then recursively multiplying

those.

So, if 2x2 matrix multiplication could

be done using 7 multiplication and

some number of additions, the

overall problem would be…

MM(2) = constant amount of work

MM(n) = 7 MM(n/2) + Θ(n2)

Is this better than O(n3)? Work out

the recurrence tree…

Strassen’s algorithm

Since MATH240 isn’t a prerequisite

for this class we won’t dive into the

very clever Strassen algorithm for

doing the 2x2 problem using only 7

multiplication operations, but it’s easy

to find online if you are curious…

