
“Average-Case” Analysis

Expected Runtimes

Insertion Sort

Quicksort

Insertion Sort

Since insertion sort has a while loop

inside, for the worst-case analysis of

data comparisons we just assume the

iterator is what makes it stop.

InsertionSort(L) {

for pos = 2 to L.length {

val = L[pos];

iter = pos-1;

while (iter<>0) and (L[iter]>val) {

L[iter+1]=L[iter];

iter--;

}

L[iter+1]=val;

}

}

Insertion Sort

For best-case data comparison
analysis we have the while loop
terminate on its first data
comparison.

For each outer loop (sum as i goes
from 2 to n) the inner loop’s total
data comparisons done is 1…

Insertion Sort

For average-case comparison analysis
we need to consider all possible
ways the while loop might
terminate.

For each outer loop (sum as i goes
from 2 to n) the inner loop’s total
iterations can be between 1 and i-1
so we can determine the expected
value of that to get an average-case
runtime…

QuickSort Recap

This is another example of a pure
“divide and conquer” algorithm.

Step 1 (divide)

Select a “pivot” value and logically
partition the list into two sub-lists:

L1: values less than the pivot

L2: values greater than the pivot

Your list is now: L1,pivot,L2

Step 2 (conquer)

Sort L1 and L2

SORTED!

QuickSort Pseudocode

Algorithm

Let’s assume that out list L is held in an
array and that we want to use as little
extra space as possible.

QuickSort(array L, int first, int last) {

if (first<last) {

pivotpos = Partition(L,first, last)

QuickSort(L, first, pivotpos-1)

QuickSort(L,pivotpos+1,last);

}

}

NOTE: We would still need to write the
Partition algorithm. The easiest thing to
code would probably be to pick the last
value in the list as the pivot and then
partition based on that.

Partition’s runtime…

There are many ways to implement

the partition algorithm, but in terms

of the number of data comparisons,

it should be accomplished using n-1.

QuickSort’s runtime…

Start with T(0) = T(1) = 0

For the recurrence relation we want to

consider three cases:

– With the worst case split.

T(n) = (n-1) + T(0) + T(n-1)

– With the best case split.

T(n) = (n-1) + T(n/2-1) + T(n/2)

– With the average/expected split….

We return to the idea of expected

values…

Let’s assume that every “division

situation” around the pivot is

equally likely.

If we let i represent the position where

L2 starts, then we could represent

the expected runtime as being:

Average Case Analysis

n

inTiT

nnT

n

i

∑
=

−+−

+−=
1

)]()1([

)1()(

What about that worst case?

Recall that regardless of the “average”

case, that if we expect mostly-sorted

inputs, then the runtime will be bad.

How could we alter our approach to

try to address (ie: decrease the

likelihood of) the issue of sorted

lists leading to n2 runtime with the

pivot/partitioning algorithm that I

originally presented?

