
“Average-Case” Analysis

Expected Runtimes

Insertion Sort

Quicksort



Insertion Sort

Since insertion sort has a while loop 

inside, for the worst-case analysis of 

data comparisons we just assume the 

iterator is what makes it stop.

InsertionSort(L) {

for pos = 2 to L.length {

val = L[pos];

iter = pos-1;

while (iter<>0) and (L[iter]>val) {

L[iter+1]=L[iter];

iter--;

} 

L[iter+1]=val;

}

}



Insertion Sort

For best-case data comparison 
analysis we have the while loop 
terminate on its first data 
comparison.

For each outer loop (sum as i goes 
from 2 to n) the inner loop’s total 
data comparisons done is 1…



Insertion Sort

For average-case comparison analysis 
we need to consider all possible 
ways the while loop might 
terminate.

For each outer loop (sum as i goes 
from 2 to n) the inner loop’s total 
iterations can be between 1 and i-1 
so we can determine the expected 
value of that to get an average-case 
runtime…



QuickSort Recap

This is another example of a pure 
“divide and conquer” algorithm.

Step 1 (divide)

Select a “pivot” value and logically 
partition the list into two sub-lists:

L1: values less than the pivot

L2: values greater than the pivot

Your list is now: L1,pivot,L2

Step 2 (conquer)

Sort L1 and L2

SORTED!



QuickSort Pseudocode

Algorithm

Let’s assume that out list L is held in an 
array and that we want to use as little 
extra space as possible.

QuickSort(array L, int first, int last) {

if (first<last) {

pivotpos = Partition(L,first, last)

QuickSort(L, first, pivotpos-1)

QuickSort(L,pivotpos+1,last);

}

}

NOTE: We would still need to write the 
Partition algorithm.  The easiest thing to 
code would probably be to pick the last 
value in the list as the pivot and then 
partition based on that.



Partition’s runtime…

There are many ways to implement 

the partition algorithm, but in terms 

of the number of data comparisons, 

it should be accomplished using n-1.



QuickSort’s runtime…

Start with T(0) = T(1) = 0

For the recurrence relation we want to 

consider three cases:

– With the worst case split.

T(n) = (n-1) + T(0) + T(n-1)

– With the best case split.

T(n) = (n-1) + T(n/2-1) + T(n/2)

– With the average/expected split….



We return to the idea of expected 

values…

Let’s assume that every “division 

situation” around the pivot is 

equally likely.

If we let i represent the position where 

L2 starts, then we could represent 

the expected runtime as being:
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What about that worst case?

Recall that regardless of the “average” 

case, that if we expect mostly-sorted 

inputs, then the runtime will be bad.

How could we alter our approach to 

try to address (ie: decrease the 

likelihood of) the issue of sorted 

lists leading to n2 runtime with the 

pivot/partitioning algorithm that I 

originally presented?


