
Randomized Algorithms

Randomized Algorithms

What does it mean for a value to be
randomly selected?

How can we make use of randomness?

Monte Carlo Algorithms

– Don’t always give the correct answer.

– The runtime can be described
consistently.

Las Vegas Algorithms

– They always give the correct answers.

– Their runtime is not consistent.

Random Median Finding #1

Algorithm

– Select a value at random, call it p.

– Partition the list around p.

– See if it was the median (same

number in each side of the

partitioning).

– If it is, great. If it wasn’t, oh well,

try again…

Question #1: Does this work?

Question #2: Is it a good algorithm?

Random Median Finding #2

Algorithm
– Select a value at random, call it p.

– Partition around p.

– See if it was the median (same number in
each side of the partitioning).

– If it wasn’t, then we have still found the
xth smallest value in the list (the value of
x will be based on the size of the
partitions).

• If x is “before” the median, take the right
side and find the (n/2-x)th smallest.

• Otherwise, take the “left” side and find the
(n/2)th smallest.

Note: If this ends up being a good idea,
we’d end up coding general selection.

Question #1: Does this work?

Question #2: Is it a good algorithm?

?? Compute the Runtime ??

How do we analyze the runtime of
something like this?

Partitioning takes n-1 comparisons
(and also the generation of a random
number).

The recursion may or may not be
needed, and we don’t know exactly
how many values will be passed into
that recursion.

T(n) = (n-1) + T(???)

The best case is easy, we find it on the
first shot and it’s n-1 comparisons.

What about worst case and average
case?

Worst? Average?

In the worst-case scenario, we let the

randomly selected value be the min or

max.

T(n) = (n-1) + T(n-1)

To work out the average runtime we

can think about expected values; do a

weighted average of all possible splits

around a selected pivot…

We will assume unique values in the list.

We’ll round things and say the partitioning

takes n comparisons.

We will look at “worst” expected runtime.

We’ll compute assuming we have to look in

the larger of the two sub-lists (which is

true for median finding).

We won’t worry about floor/ceiling issues

in this initial exploration.

Expected Running Time

n

xnxT

nnT

n

x

∑
=

−−

+≤
1

)),1(max(

)(

