
Order Statistics

(aka Selection Problems)

Part II: Linear-Time Median Finding

Select(list, pos)

Previously we attempted to…

Place the n elements of the list into groups

of 3 and find the median of those groups

and create Med3List.

MoM3=Select(Med3List, n/6);

Partition the original list around MoM3

into LeftList and RightList and figure out

the position of MoM3.

if pos==MoM3pos then

DONE!

elseif pos<MoM3pos then

Select(LeftList, pos);

else

Select(RightList, pos-MoM3pos)

…but this ran worst-case O(nlogn) time.

Were we close?

We’ve seen via recurrence trees that

eliminating some items as we go

down level-by-level has some nice

asymptotic advantages.

What if we could eliminate some more

values before our recursion…

Select(list, pos)

Let’s try something a little different…

Place the n elements of the list into groups

of 5 and find the median of those groups

and create Med5List.

MoM5=Select(Med5List, n/10);

Partition the original list around MoM5

into LeftList and RightList and figure out

the position of MoM5.

if pos==MoM5pos then

DONE!

elseif pos<MoM5pos then

Select(LeftList, pos);

else

Select(RightList, pos-MoM5pos)

…how will this run in the worst-case?

How bad is that last call?

After partitioning around the MoM5,

in the worst case possible, how

many elements are there in the sub-

list that we are going to call Select()

on recursively?

What’s The Worst Runtime?

Find the Med5s: Θ(n)

Find the MoM5: T(n/5)

Partition around MoM5: Θ(n)

Worst Case Recursion: T(7n/10)

It’s linear!

Next, let’s try to narrow-in on the

constant coefficient…

