
1

Order Statistics
(aka Selection Problems)

Part I: Intro to ideas around

Min, Max, and Median

Order Statistics

Simply stated: “Given a list of

n unique values, find the ith

smallest.”

Common Examples

1st smallest (Minimum)

nth smallest (Maximum)

n/2th smallest (Median)

2

Solving Selection Problems

How can we approach solving

such problems?

Trivial Way: Sort the list and

then return the ith position.

This is clearly not a good

approach for things such as

minimum and maximum.

This may or may not be a

good approach for other

problems such as median

finding.

Minimum

Finding the minimum can easily be

done using at worst n-1 comparisons:

– Call the first item in the list the smallest.

– For each item remaining, compare it to

the item currently considered smallest

and if it is smaller than that item, set this

new item as the smallest.

Do other algorithms exist? Sure, but

are they any better? We already saw

the runtime of the following recursive

algorithm…

– Split the list in half.

– Find the minimum of each half.

– Take the minimum of the two “local”

minimums returned.

3

Maximum

Is there any practical difference

between algorithms for finding

the maximum as opposed to

finding the minimum value in a

list?

– No!

Minimum AND Maximum

Consider the following scenario:

You are given a list of coordinates and are
asking to return a bounding box for
these points.

Your getBoundingBox() method would
need to find both the minimum x-
coordinate as well as the maximum
x-coordinate (and then do the same
for the y-coordinates).

In general, given a list of items, it is
easy to find the minimum and the
maximum using 2(n-1) comparisons.

Can we do better?

4

Min/Max Algorithm #1

What is the runtime of the following

algorithm to find the minimum and

maximum “at the same time” and

will it always give the correct

results?

– Traverse the list once, two at a time,

comparing pairs.

– As this is done, create two sub-lists:

SubList1 for the greater of the pair-

wise comparisons and SubList2 for the

lesser.

– Call the regular maximum algorithm

on SubList1 and the regular minimum

algorithm on SubList2.

Min/Max Algorithm #2

What is the runtime of the following

algorithm to find the minimum and

maximum “at the same time” and

will it always give the correct results?

– Compare the first two elements in the

list. Set the smaller as min and the

larger as max.

– For the remaining elements of the list:

• Pair up and compare the items in each pair.

• Compare the smaller of the pair to the

current min, replacing it if we have a new

min.

• Compare the larger of the pair to the current

max, replacing it if we have a new max.

5

Median

Here we are given a list of n values and

are asked to determine which would

be in the “middle” of the sorted

version of the list.

This can also be stated as “there are the

same number of values lower than the

median as greater than it” if you’d

like.

Finding the median can easily be done

using at worst order nlogn

comparisons:

– Sort the list using MergeSort.

– Return the n/2th element.

Can we do better?

Inspiration from Min? Max?

If we looked for the minimum value,

discarded it, looked for the next

minimum value, etc. n/2 times we

would get the Median, but it would

take Θ(n2) time, so we might as well

sort.

Using a divide and conquer approach

did not lead to any improvements in

Min or Max but it did lead to some

improvement for Min&Max…

6

My First Thought

My thought process when I saw this

problem was:

– Hmmmmm. Finding the Median of a

3-element list would be a matter of

finding the Min and the Max and

discarding them to find the Median…

– I wonder if I could do something

where I group things on clusters of 3

values and take advantage of this…

The First
Golub Median-3 Algorithm

– Group values into blocks of 3.

– Find the median of each of those 3-

groups.

– Recursively find the median of those

medians.

First question: Does this work?

Second question (if it does): What’s

the worst-case runtime?

7

An Algorithm That Works?

While the “median of median-3s” is

not guaranteed to be the median of

the original list, it turns out that it

looks like it might be a nice pivot

value.

If we partition around this pivot value:

– We get two lists.

– The median value is in ONE of these

two lists, and by looking at the size of

the lists, we know which one.

Challenge: We won’t be looking for

the median anymore in the next

round.

Select(list, pos)

Place the n elements of the list into

groups of 3 and find the median of

those groups and create Med3List.

MoM3=Select(Med3List, n/6);

Partition the original list around

MoM3 into LeftList and RightList

and figure out the position of

MoM3.

if pos==MoM3pos then

DONE!

elseif pos<MoM3pos then

Select(LeftList, pos);

else

Select(RightList, pos-MoM3pos)

8

How bad is that last call?

After partitioning around the MoM3,

in the worst case possible, how

many elements are there in the sub-

list that we are going to call Select()

on recursively?

What’s The Worst Runtime?

Find the Med3s: Θ(n)

Find the MoM3: T(n/3)

Partition around MoM3: Θ(n)

Worst Case Recursion: T(2n/3)

Use recursion tree to figure out the

runtime of this…

