
Solving More Types of 

Recurrences



Recurrences

We’ve already seen several run-times 

expressed as recurrence relations, 

and have solved for them.

There are different strategies that can 

be used to solve these.

We will explore determining the 

asymptotic classes of a variety of 

recurrences representing run-times.



Generic Example I

We previously saw that if 

T(n)=2T(n/2) +n

then T(n)∈O(nlogn)

What if T(n)=2T(n/2 + 7) +n?

Try using constructive induction to 

show that there is some constant c

such that T(n)≤cnlogn.



Generic Example II

What if T(n)=2T(n/2) +1?

Try using constructive induction to 

show that there is some constant c

such that T(n)≤cn.

For posting note: In class our usual 

constructive induction approach did 

not work, but it was close.  We then 

tried again using T(n)≤cn + a where 

a is another constant (and it can be 

any real number).  This time we 

were be able to construct constants c 

and a.



Generic Example III

What if were to use the same 

technique to try to prove that when  

T(n)=2T(n/2) +n that there is some 

constant c such that T(n)≤cn?

For posting note: In class we weren’t 

even close this time.  We ended up 

with a restriction that n<0 which is 

problematic for two reasons; first it 

eliminates all input size, but second 

even if it were n being less than 

some positive value, it would still 

make n0 impossible since we need 

the statement true for all n>=n0.

It’s not true.  We need a little-ω proof.



Binary Search

We look at the middle element.

– If it is equal to what we want, we can 

stop.

– If it is greater than our search target, 

we search the “left” half of the list.

– Otherwise, we search the “right” half 

of the list.

If we look at the recursive part, we 

have T(n) = 2+T(n/2).  In the worst 

case, this happens over and over 

until we hit a stopping point when 

n=1.

Could we use constructive induction 

to show that T(n)∈O(n)?  What 

about T(n)∈Ω(n)?



More Binary Search

With recursion, sketching out a 

recursion tree representing what 

occurs can help build intuition and 

allow us to make a more intelligent 

guess at the class of run-time we 

wish to prove.

What is it for a binary search?



Mystery Algorithm I

I have an algorithm in which I ask n

questions, am able to eliminate 1/4th

of the input as candidates, and am 

able to create three recursive sub-

questions of equal size.

T(n)=n+3T(n/4)

Goal: Make an informed/intelligent 

guess at its runtime…



Mystery Algorithm II

I have an algorithm in which I am able 

to create two recursive sub-

questions (one using 1/3rd of the 

data and the other using the 

remaining 2/3rd) and then by asking 

n questions of the information 

returned, am able to return the 

correct answer.

T(n)=T(n/3)+T(2n/3)+n

Goal: Make an informed/intelligent 

guess at its runtime…



Mystery Algorithm III

I have an algorithm in which I am able 

to create two recursive sub-

questions (both using 2/3rd of the 

data so there is overlap) and then by 

asking n questions of the 

information returned, am able to 

return the correct answer.

T(n)=2T(2n/3)+n

Goal: Make an informed/intelligent 

guess at its runtime…



Mystery Algorithm IV

I have an algorithm in which I am able 

to create six recursive sub-questions 

(using 1/4th of the data so there is 

overlap) and then by asking only 1 

more questions of the information 

returned, am able to return the 

correct answer.

T(n)=6T(n/4)+1

Goal: Make an informed/intelligent 

guess at its runtime…



Are there patterns?

As we look at different recurrences, 

certain patterns come up where just 

by looking at the structure of the 

recursion, we might be able to guess 

at the run-time from experience.

Is there a way to more precisely 

describe some of these patterns?

Yes!

It’s called…



The Master Theorem



Example

T(n)=n+3T(n/4)

T(n)=aT(n/b)+f(n)

a=3

b=4

f(n)=n



Example

T(n)=2T(2n/3)+n

T(n)=aT(n/b)+f(n)

a=2

b=3/2

f(n)=n



Example

T(n)=6T(n/4)+1

T(n)=aT(n/b)+f(n)

a=6

b=4

f(n)=1



Example

Can we apply the Master Theorem to 

T(n)=2T(n-5)+n?



Things to consider…

We are given some recurrence relations that 
don’t fit into the Master Theorem well, 
such as:

T(1)=1

T(n)=T(n/4)+T(3n/4)+1

Things we want to observe.

Structure of the tree

– Symmetrical?

– Density?

– Number of levels?  (Best? Worst?)

Work done

– At full interior levels?

– At leaves?

Asymptotic relationships

– Big-Omega

– Big-O



What is the impact of the f(n)?

What if we make a change to only the 

f(n) in the previous recurrence:

T(1)=1

T(n)=T(n/4)+T(3n/4)+n

-vs-

T(1)=1

T(n)=T(n/4)+T(3n/4)+1


