
Solving More Types of

Recurrences

Recurrences

We’ve already seen several run-times

expressed as recurrence relations,

and have solved for them.

There are different strategies that can

be used to solve these.

We will explore determining the

asymptotic classes of a variety of

recurrences representing run-times.

Generic Example I

We previously saw that if

T(n)=2T(n/2) +n

then T(n)∈O(nlogn)

What if T(n)=2T(n/2 + 7) +n?

Try using constructive induction to

show that there is some constant c

such that T(n)≤cnlogn.

Generic Example II

What if T(n)=2T(n/2) +1?

Try using constructive induction to

show that there is some constant c

such that T(n)≤cn.

For posting note: In class our usual

constructive induction approach did

not work, but it was close. We then

tried again using T(n)≤cn + a where

a is another constant (and it can be

any real number). This time we

were be able to construct constants c

and a.

Generic Example III

What if were to use the same

technique to try to prove that when

T(n)=2T(n/2) +n that there is some

constant c such that T(n)≤cn?

For posting note: In class we weren’t

even close this time. We ended up

with a restriction that n<0 which is

problematic for two reasons; first it

eliminates all input size, but second

even if it were n being less than

some positive value, it would still

make n0 impossible since we need

the statement true for all n>=n0.

It’s not true. We need a little-ω proof.

Binary Search

We look at the middle element.

– If it is equal to what we want, we can

stop.

– If it is greater than our search target,

we search the “left” half of the list.

– Otherwise, we search the “right” half

of the list.

If we look at the recursive part, we

have T(n) = 2+T(n/2). In the worst

case, this happens over and over

until we hit a stopping point when

n=1.

Could we use constructive induction

to show that T(n)∈O(n)? What

about T(n)∈Ω(n)?

More Binary Search

With recursion, sketching out a

recursion tree representing what

occurs can help build intuition and

allow us to make a more intelligent

guess at the class of run-time we

wish to prove.

What is it for a binary search?

Mystery Algorithm I

I have an algorithm in which I ask n

questions, am able to eliminate 1/4th

of the input as candidates, and am

able to create three recursive sub-

questions of equal size.

T(n)=n+3T(n/4)

Goal: Make an informed/intelligent

guess at its runtime…

Mystery Algorithm II

I have an algorithm in which I am able

to create two recursive sub-

questions (one using 1/3rd of the

data and the other using the

remaining 2/3rd) and then by asking

n questions of the information

returned, am able to return the

correct answer.

T(n)=T(n/3)+T(2n/3)+n

Goal: Make an informed/intelligent

guess at its runtime…

Mystery Algorithm III

I have an algorithm in which I am able

to create two recursive sub-

questions (both using 2/3rd of the

data so there is overlap) and then by

asking n questions of the

information returned, am able to

return the correct answer.

T(n)=2T(2n/3)+n

Goal: Make an informed/intelligent

guess at its runtime…

Mystery Algorithm IV

I have an algorithm in which I am able

to create six recursive sub-questions

(using 1/4th of the data so there is

overlap) and then by asking only 1

more questions of the information

returned, am able to return the

correct answer.

T(n)=6T(n/4)+1

Goal: Make an informed/intelligent

guess at its runtime…

Are there patterns?

As we look at different recurrences,

certain patterns come up where just

by looking at the structure of the

recursion, we might be able to guess

at the run-time from experience.

Is there a way to more precisely

describe some of these patterns?

Yes!

It’s called…

The Master Theorem

Example

T(n)=n+3T(n/4)

T(n)=aT(n/b)+f(n)

a=3

b=4

f(n)=n

Example

T(n)=2T(2n/3)+n

T(n)=aT(n/b)+f(n)

a=2

b=3/2

f(n)=n

Example

T(n)=6T(n/4)+1

T(n)=aT(n/b)+f(n)

a=6

b=4

f(n)=1

Example

Can we apply the Master Theorem to

T(n)=2T(n-5)+n?

Things to consider…

We are given some recurrence relations that
don’t fit into the Master Theorem well,
such as:

T(1)=1

T(n)=T(n/4)+T(3n/4)+1

Things we want to observe.

Structure of the tree

– Symmetrical?

– Density?

– Number of levels? (Best? Worst?)

Work done

– At full interior levels?

– At leaves?

Asymptotic relationships

– Big-Omega

– Big-O

What is the impact of the f(n)?

What if we make a change to only the

f(n) in the previous recurrence:

T(1)=1

T(n)=T(n/4)+T(3n/4)+n

-vs-

T(1)=1

T(n)=T(n/4)+T(3n/4)+1

